《抽屉原理》教学设计优秀

时间:2024-04-12 17:19:41 设计 我要投稿

《抽屉原理》教学设计优秀3篇【通用】

  作为一无名无私奉献的教育工作者,总不可避免地需要编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。那么大家知道规范的教学设计是怎么写的吗?下面是小编帮大家整理的《抽屉原理》教学设计优秀,仅供参考,欢迎大家阅读。

《抽屉原理》教学设计优秀3篇【通用】

《抽屉原理》教学设计优秀1

  教材分析

  《抽屉原理的认识》是人教版数学六年级下册第五章内容。在数学问题中有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明是通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。“抽屉原理”最先是由19世纪的德国数学家狄里克雷(Dirichlet)运用于解决数学问题的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。、

  学情分析

  本节课我根据“教师是组织者、引导者和合作者”这一理念,以学生参与活动为主线,创建新型的教学结构。通过几个直观的例子,用假设法向学生介绍“抽屉原理”,学生难以理解,感觉抽象。在教学时,我结合本班实际,用学生熟悉的吸管和杯子贯穿整个课堂,让学生通过动手操作,在活动中真正去认识、理解“抽屉原理”学生学得轻松也容易接受。

  教学目标

  1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

  2、通过操作发展 的类推能力,形成抽象的数学思维。

  3、通过“抽屉原理”的灵活应用,感受数学的魅力。

  教学重点和难点

  【教学重点】

  经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

  【教学难点】

  理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

  教学内容:

  六年级数学下册70页、71页例1、例2。

  教学目标:

  1、理解“抽屉原理”的一般形式。

  2、经历“抽屉原理”的探究过程,体会比较、推理的学习方法,会用“抽屉原理”解决简单的的实际问题。

  4、感受数学的魅力,提高学习兴趣,培养学生的探究精神。

  教学重点:

  经历“抽屉原理”探究过程,初步了解“抽屉原理”。

  教学难点:

  理解“抽屉原理”的一般规律。

  教学准备:

  相应数量的杯子、铅笔、课件。

  教学过程:

  一、情景引入

  让五位学生同时坐在四把椅子上,引出结论:不管怎么坐,总有一把椅子上至少坐了两名学生。

  师:同学们,你们想知道这是为什么吗?今天,我们一起研究一个新的有趣的.数学问题。

  二、探究新知

  1、探究3根铅笔放到2个杯子里的问题。

  师:现在用3根铅笔放在2个杯子里,怎么放?有几种放法?大家摆摆看,有什么发现?

  摆完后学生汇报,教师作相应的板书(3,0)(2,1),引导学生观察理解说出:不管怎么放总有一个杯子至少有2根铅笔。

  (1)师:依此推下去,把4根铅笔放在3个杯子又怎么放呢?会有这种结论吗?让学生动手操作,做好记录,认真观察,看看有什么发现?

  (2)、学生汇报放结果,结合学具操作解释。教师作相应记录。

  (4,0,0) (3,1,0) (2,2,0) (2,1,1)

  (学生通过操作观察、比较不难发现有与上个问题同样结论。)

  (3)学生回答后让学生阅读例1中对话框:不管怎么放,总有一个杯子里至少放进2根铅笔。

  师:“总有”是什么意思?“至少”呢?让学生理解它们的含义。

  师:怎样放才能总有一个杯子里铅笔数最少?引导学生理解需要“平均放”。

  教师出示课件演示让学生进一步理解“平均放”。

  3、探究n+1根铅笔放进n个杯子问题

  师:那我们再往下想,6根铅笔放在5个杯子里,你感觉会有什么结论?

  让学生思考发现不管怎么放,总有一个杯子里至少有2根铅笔。

  师:7根铅笔放进6个杯子,你们又有什么发现?

  学生回答完之后,师提出:是不是只要铅笔数比杯子数多1,总有一个杯子里至少放进2根铅笔?让学生进行小组合作讨论汇报。

  学生汇报后引导学生用实验验证想法。

  师:把10根小棒放在9个杯子里呢,总有一个杯子里至少有几根小棒?(2根)

  师:把100根小棒放在99个杯子里,会有什么结论呢?(2根)

  4、总结规律

  师:刚才我们研究的都是铅笔数比杯子数多1,而余数也正巧是1的,如果余下铅笔数比杯子多2、多3、多4的呢,结论又会怎样?

  (1)探究把5根铅笔放在3个杯子里,不管怎么放,总有一个杯子里至少有几根铅笔?为什么?

  a、先同桌摆一摆,再说一说。

  b、你怎么分的?

  学生汇报后,教师演示:将5根笔平均分到3个杯子里里,余下的两根怎么办?是把余下的两根无论放到哪个杯子里都行吗?怎样保证至少?

  引导学生知道再把两根铅笔平均分,分别放入两个杯子里。

  (2)探究把15根铅笔放在4个杯子里的结论。

  (3)、引导学生总结得出结论:商加1是总有一个杯子至少个数。

《抽屉原理》教学设计优秀2

  教学目标:

  1.知识与能力目标:

  经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。

  2.过程与方法目标:

  经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。

  3.情感、态度与价值观目标:

  通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

  教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

  教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

  教学准备:教具:5个杯子,6根小棒;学具:每组5个杯子,6根小棒。

  教学过程:

  一、游戏激趣,初步体验。

  师:同学们,你们玩过扑克牌吗?下面我们用扑克牌来玩个游戏。大家知道一副扑克牌有54张,如果去掉两张王牌,就剩52张,对吗?如果从这52张扑克牌中任意抽取5张,我敢肯定地说:“张5张扑克牌至少有2张是同一种花色的,你们信吗?那就请5位同学上来各抽一张,我们来验证一下。如果再请五位同学来抽,我还敢这样肯定地说,你们相信吗?其实这里面蕴藏着一个非常有趣的数学原理,想不想研究啊?

  二、操作探究,发现规律。

  (一)经历“抽屉原理”的探究过程,理解原理。

  1.研究小棒数比杯子数多1的情况。

  师:今天这节课我们就用小棒和杯子来研究。

  师:如果把3根小棒放在2个杯子里,该怎样放?有几种放法?

  学生分组操作,并把操作的结果记录下来。

  请一个小组汇报操作过程,教师在黑板上记录。

  师:观察这所有的摆法,你们发现总有一个杯子里至少有几根小棒?板书:总有一个杯子里至少有。

  师:依此推想下去,4根小棒放在3个杯子里,又可以怎样放?大家再来摆摆看,看看又有什么发现?

  学生分组操作,并把操作的结果记录下来。

  请一个小组代表汇报操作过程,教师在黑板上记录。

  师:观察所有的摆法,你发现了什么?这里的“总有”是什么意思?“至少”又是什么意思?

  师:那如果把6根小棒放在5个杯子里,猜一猜,会有什么样的结果?

  师:怎样验证猜测的结果对不对,你又什么好方法?引导学生不再一一列举,用平均分的方法来找答案。并用算式表示分的结果:6÷5=1……1

  师:那如果用这种方法,你知道把7根小棒放在6个杯子里,把10根小棒放在9个杯子里,把100根小棒放在99个杯子里,会有什么样的结果呢?你又从中发现了什么规律呢?

  师:我们发现了小棒的数量比杯子的数量多1,总有一个杯子里至少有2根小棒。那如果小棒的数量比杯子的数量多2、多3,又会有什么样的结果呢?

  2、研究小棒数比杯子数多2、多3的情况。

  师:如果把5根小棒放在3个杯子里,会有什么结果?

  引导:先平均分,每个杯子里分得1根小棒,余下的2根小棒又该怎么分呢?

  师:把7根小棒放在3个杯子里,会有什么结果呢?为什么?

  3、研究小棒数比杯子数的2倍多、3倍多…等情况。

  师:如果把9根小棒放在4个杯子里,把15根小棒放在4个杯子里,分别又会有什么结果?

  小组内讨论,再请同学说结果和理由。

  4、总结规律。

  师:我们将小棒看做物体、把杯子看做抽屉,你发现了什么规律?

  总结:把m个物体放在n个抽屉里(m﹥n),总有一个抽屉至少有“商+1”个物体。

  5、介绍抽屉原理。

  “抽屉原理”又称“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的`,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

  三、应用“抽屉原理”,感受数学的魅力。

  1、把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?为什么?

  先思考:这里是把什么看做物体?什么看做抽屉?再说结果和理由。

  2、8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?

  3、向东小学六年级共有370名学生,其中六(2)班有49名学生。请问下面两人说的对吗?为什么?

  (1)六年级里至少有两人的生日是同一天。

  (2)六(2)班中至少有5人是同一个月出生的。

  4、张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有一镖不低于9环。为什么?

  5、师:开课时我们做的游戏还记得吗?为什么老师可以肯定地说:从52张牌中任意抽取5张牌,至少会有2张牌是同一花色的?你能用所学的抽屉原理来解释吗?

  四、全课小结。

  说一说:今天这节课,我们又学习了什么新知识?(师生共同对本节课的内容进行小结)

  五、布置作业。

  课本73页练习十二第2、4题。

  六、板书设计。

  数学广角——抽屉原理

《抽屉原理》教学设计优秀3

  桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。

  教学理念:

  激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“抢椅子”,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。

  教学目标

  1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

  2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

  3.通过“抽屉原理”的灵活应用感受数学的魅力。

  教学重难点

  重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

  难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

  教学过程:

  一、课前游戏引入。

  师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)

  师:听清要求 ,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那5个人。

  师:开始。

  师:都坐下了吗?

  生:坐下了。

  师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两个同学”我说得对吗?

  生:对!

  师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。(抽屉原理)

  二、通过操作,探究新知

  (一)探究例1

  1、研究3枝铅笔放进2个文具盒。

  (1)要把3枝铅笔放进2个文具盒 ,有几种放法?请同学们想一想,摆一摆,写一写,再把你的想法在小组内交流。

  (2)反馈:两种放法:(3,0)和(2,1)。

  (3)从两种放法,同学们会有什么发现呢?(总有一个文具盒至少放进2枝铅笔)你是怎么发现的?(说得真有道理)

  (4)“总有”什么意思?(一定有)

  (5)“至少”有2枝什么意思?(不少于2枝)

  小结:在研究3枝铅笔放进2个文具盒时,同学们表现得很积极,发现了“不管怎么放,总有一个文具盒放进2枝铅笔)

  2、研究4枝铅笔放进3个文具盒。

  (1)要把4枝铅笔放进3个文具盒里,有几种放法?请同学们动手摆一摆,再把你的想法在小组内交流。

  (2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。

  (3)从四种放法,同学们会有什么发现呢?(总有一个笔盒至少有2枝铅笔)

  (4)你是怎么发现的?

  (5)大家通过枚举出四种放法,能清楚地发现“总有一个文具盒放进2枝铅笔”。如果要让每个文具盒里放的笔尽可能的少,你觉得应该要怎样放?(每个文具盒都先放进一枝,还剩一枝不管放进哪个文具盒,总会有一个文具盒至少有2枝笔)(你真是一个善于思想的孩子。)

  (6)这位同学运用了假设法来说明问题,你是假设先在每个文具盒里放1枝铅笔,这种放法其实也就是怎样分?(平均分)那剩下的1枝怎么处理?(放入任意一个文具盒,那么这个文具盒就有2枝铅笔了)

  (7)谁能用算式来表示这位同学的想法?(5÷4=1…1)商1表示什么?余数1表示什么?怎么办?

  (8)在探究4枝铅笔放进3个文具盒的问题,同学们的方法有两种,一是枚举了所有放法,找规律,二是采用了“假设法”来说明理由,你觉得哪种方法更明了更简单?

  3、类推:把5枝铅笔放进4个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

  把6枝铅笔放进5个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

  把7枝铅笔放进6个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

  把100枝铅笔放进99个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

  4、从刚才我们的探究活动中,你有什么发现?(只要放的铅笔比文具盒的数量多1,总有一个文具盒里至少放进2枝铅笔。)

  5、如果铅笔数比文具盒数多2呢?多3呢?是不是也能得到结论:“总有一个笔盒至少有2枝铅笔。”

  6、小结:刚才我们分析了把铅笔放进文具盒的情况,只要铅笔数量多于文具盒数量时,总有一个文具盒至少放进2枝铅笔。

  这就是今天我们要学习的`抽屉原理。既然叫“抽屉原理”是不是应该和抽屉有联系吧?铅笔相当于我们要准备放进抽屉的物体,那么文具盒就相当于抽屉了。如果物体数多于抽屉数,我们就能得出结论“总有一个抽屉里放进了2个物体。”

  7、在我们的生活中,常常会遇到抽屉原理,你能不能举个例子?在课前我们玩的游戏中,有没有抽屉原理?

  过渡:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。同学们的思维也在不知不觉中提升了许多,那么让我们再来研究这样一组问题。

  (二)探究例2

  1、研究把5本书放进2个抽屉。

  (1)把5本书放进2个抽屉会有几种情况?(5,0)、(4,1)和(3,2)

  (2)从三种情况中,我们可以得到怎样的结论呢?(总有一个抽屉至少放进了3本书)

  (3)还可以怎样理解这个结论?先在每个抽屉里放进2本,剩下的1本放进任何一个抽屉,这个抽屉就有3本书了。

  (4)可以把我们的想法用算式表示出来:5÷2=2…1(商2表示什么,余数1表示什么)2+1=3表示什么?

  2、类推:如果把7本书放进2个抽屉中,至少有一个抽屉放进4本书。

  如果把9本书放进2个抽屉中。至少有一个抽屉放进5本书。

  如果把11本书放进3个抽屉中。至少有一个抽屉放进4本书。你是怎样想的?(11÷3=3…2)商3表示什么?余数2表示什么?3+1=4表示什么?

  3、小结:从以上的学习中,你有什么发现?(在解决抽屉原理时,我们可以运用假设法,把物体尽可量多地“平均分”给各个抽屉,总有一个抽屉比平均分得的物体数多1。)

  4、经过刚才的探索研究,我们经历了一个很不简单的思维过程,个个都是了不起的数学家。 “抽屉原理”最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

  5、做一做:

  7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个佶舍里。为什么?

  8只鸽子飞回3个鸽舍,至少有3只鸽子要飞时同一个鸽舍里。为什么?

  (先让学生独立思考,在小组里讨论,再全班反馈)

  三、迁移与拓展

  下面我们一起来放松一下,做个小游戏。

  我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?

  四、总结全课

  这节课,你有什么收获?

【《抽屉原理》教学设计优秀】相关文章:

抽屉原理优秀教学设计03-05

《抽屉原理》教学设计优秀12-12

《抽屉原理》教学设计优秀【经典】02-10

《抽屉原理》教学设计优秀【优】01-05

《抽屉原理》教学设计02-22

抽屉原理教学设计02-01

抽屉原理教学设计12-14

抽屉原理教学设计03-28

《抽屉原理》教学设计最新04-11