(优秀)三角形教学设计
作为一位不辞辛劳的人民教师,总归要编写教学设计,借助教学设计可以提高教学效率和教学质量。那么你有了解过教学设计吗?下面是小编收集整理的三角形教学设计,仅供参考,大家一起来看看吧。
三角形教学设计1
教学目的:
1、通过观察、操作、比较,发现三角形角和边的特征,会给三角形分类,理解并掌握三角形的种类特征,能解决一些简单的实际问题。
2、培养学生观察能力、操作能力和形象灵活的思维能力。
3、激发学生的主动参与意识、自我探索意识和创新精神。
教学重点:
会按角和边的特征给三角形分类。
教学难点:
区别掌握各种三角形的特征。
教学关键:
引导学生自己观察、操作、比较、发现三角形角和边的特征。
教学环节:
一、创设情境,激趣导课
1、出示锐角、直角、钝角。
提问:
①同学们,还认识它们吗?
②你知道它们之间的大小关系吗?
③如果我在这些角上加上一条线段的话,那变成什么了呢?
2、出示加一条线段,变成了三个三角形。
提问:
①请你认真观察,这三个三角形有什么共同的特征呢?(三个角,三条边。)
②那这三个三角形又有什么不同呢?(角的大小,边的长短都不同。)
③这些三角形有共同的特征,但他们也有许多不同之处,下面我们就根据不同特点对三角形进行分类。
3、揭示课题。
板书课题:三角形的分类。
复习角和三角形有关的知识,是为下面探究新知作好铺垫。创设问题情境,引出要探讨的问题,激发学生学习的.兴趣。
二、小组合作,探究新知
1、下面各学习小组先讨论用什么方法进行分类呢?
2、学生汇报从哪个方面去分。(①按角分②按边分。)
3、下面我们通过小组合作探究的方式来对三角形分类,在探究之前请同学们听清楚小组合作的要求。
4、小组合作要求:
①每个同学负责测量一个三角形的相关数据。
②把测量的数据记录在三角形对应的位置上。
③各小组按照刚才讨论的方法去进行分类,并在桌子上分一分。
5、同学们看看小组合作要求,哪个同学来解释一下这三句话的意思。
6、下面请小组长从信封中拿出这6个三角形,分好工,按照活动要求进行探究。(教师巡视)
为学生创设交流的情境,提供“数学对话”的机会。通过小组观察、讨论、交流活动,使学生的自主学习与合作交流有机的结合,最大限度发挥合作学习的优势。
三、交流展示,建构概念
(一)按角分类
1、小组长带上这6个三角形把小组合作的成果进行展示。(请同学们认真观察,看看你们小组的分法是否和他们的一样)
2、请小组长汇报为什么这样分?
①三个锐角②一个直角,两个锐角③一个钝角,两个锐角(板书)
3、有没有哪个小组也是这样分类的?需要补充吗?
4、你能给这三类三角形分别取个名字吗?
①锐角三角形②直角三角形③钝角三角形(板书)
5、像这样的三类三角形我们是按什么方法分类的呢?按角分(板书)
6、概括三类三角形的概念。
7、三角形按角分成了这三类,下面我们用图来表示这三类三角形的关系,你们觉得可以怎样来表示呢?
(二)按边分类
1、刚才那一组是从角的角度进行分类,其他小组有没有用不同的方法进行分类的呢?(小组长进行展示成果)
2、请你说一说你们为什么会这样分类呢?①三边都不相等②有两边相等(板书)
3、有没有哪个小组也是这样分类的?需要补充吗?
4、分别给它们取个名字。①不等边三角形②等腰三角形(板书)
5、我们来看看等腰三角形和等边三角形之间是否存在一定的关系。等边三角形是否具备等腰三角形的特征呢?(教师引导分析)这就说明等腰三角形包含等边三角形,那我们通常把等边三角形归为等腰三角形这一类。
6、在小组内找出等腰三角形和等边三角形,看看它们各个角的度数分别是多少,你有什么发现呢?(等腰三角形有两个角相等,等边三角形有三个角相等)
7、下面我们来认识等腰三角形和等边三角形的各部分名称,请同学们看书上第65页的内容。
8、课件出示各部名称。(学生回答后再逐一出示)
9、总结等腰三角形和等边三角形的特征。
四、拓展应用,巩固概念
五、课堂小结:
通过本节课的学习,你学到了什么?在学生动手操作充分感知的基础上,引导学生归纳出各种三角形特征。学生的探究能力和归纳概括能力在不知不觉中得到培养与提高。
从等腰三角形中寻找特殊,在探究的过程中渗透了等腰三角形与等边三角形的关系。渗透出“异中求同,同中求异”的辨证思维观念。
交流学生自己发现的结果,获得数学学习的积极体验。通过动手、动口、动脑的过程,进一步认识等腰三角形和等边三角形,真实体验等腰三角形、等边三角形边和角的特点。
三角形教学设计2
[设计思路]
这节课主要运用动手实践、自主探索、合作交流的学习方式,通过操作、讨论、交流等活动,使学生主动地获得数学知识的技能,发展学生的思维能力,培养学生创新意识。教学中加强数学知识与生活实际的联系,让学生体会到数学的价值,激发学生的学习兴趣,培养学生应用意识和实践能力。设计练习时应具有一定针对性、层次性、实践性,以此巩固三角形特征的认识。
[教学目标]
1、使学生联系实际和利用生活经验,通过观察、操作、测量、等学习活动认识三角形的基本特征,知道三角形各部分的名称,了解三角形的两边之和大于第三边。
2、让学生在由实物到图形的抽象过程中,在探索图形特征以及相关结论的过程中,进一步发展空间观念,锻炼思维能力。
[教具、学具准备]
学生准备小棒若干根(包括10cm、6cm、5cm、4cm长的小棒各一根),三角板,铁丝。
[教学过程]
一、创设情境,提出问题
1、(课件出示:如下图)师:老师每天上班都要从学校先经过加油站,再从加油站到学校,有没有更近一点的路呢?(从家直接去学校)
2、师:为什么从家直接去学校这条路最近呢?我们可以把这几个地点和路线看成什么图形呢?
3、谈话:三角形是我们过去认识的图形,这里面还有很多数学问题,今天同学要通过动手操作,自己来探索发现。(板书:三角形的认识)
[设计意图:创设学生熟悉的生活情境,提出问题引发学生深入思考,引起悬念,从而激起学生探索的愿望]
二、动手操作、探索新知
(一)感知三角形
1、师:生活中你在哪些地方见到过三角形?课件演示生活中的一些三角形。
2、师:同学们在生活中找出了许多三角形,你能想办法自己做个三角形吗?
学生操作,教师巡视指导
3、展示学生做出的各种三角形,并说说做的过程和方法(学生可能是用小棒摆,铁丝围,用纸折,用三角板画……)
指名让一名学生用小棒摆一个三角形,师故意拨动小棒,使学生明白摆小棒时应首尾相连。
4、师:同学们用自己的方法做出了不同的三角形,你们能自己画一个三角形吗?在课本第23页的点子图上自己画一个三角形。
5、师在黑板上画出三角形。
6、师:我们已经做了三角形,又画了三角形,你们知道三角形各部分的名称吗?自学课本第22页下面的图。
学生找出黑板上三角形的三条边、三个角、三个顶点。(师相机板书)
7、在自己画出的三角形上,标出各部分的名称。
8、小结:三角形是有三条线段围成的图形,它有三条边、三个角、三个顶点。
[设计意图:通过让学生自己动手做三角形、画三角形,并在学生摆小棒的过程中故意“捣乱”,让学生体验到三角形是由三条线段围成的图形,也为后面学生的活动打好基础;通过自学认识三角形有三条边、三个角、三个顶点,逐步形成三角形的概念。]
(二)感受三角形三条边的关系
1、谈话:刚才我们用小棒摆了三角形,如果任意给你们三根小棒能把他们围成三角形吗?(有的说“能”,有的说“不能”。)让我们动手实验一下吧!
小组活动要求:
a、从四根中任意选三根(小棒的长度分别为:10cm、6cm、5cm、4cm)
b、记录所选三根小棒的长度,看一看能否用选定的三根小棒围成一个三角形。
c、小组讨论有什么发现?
学生操作,教师巡视指导
2、展示和报告实验结果,说说选的哪三根小棒能围成三角形,哪三根小棒不能围成三角形。
3、说说能不能围成三角形跟小棒的什么有关?(长度)课件演示不能围成三角形的两种情况。
4、师:通过刚才的小组活动,老师的演示,你有什么发现?
引导学生说出:当两根小棒的长度之和等于或小于第三根时,就不能围成一个三角形。
5、观察能围成的三角形的三条边,看看有什么发现?
师生共同总结出:三角形两条边长度的和大于第三条边。
[设计意图:让学生动手操作、小组合作,让学生自己在操作过程中感受三角形三条边之间的关系;在交流中升华。培养学生动手操作能力,真正体现了学生学习方式的改善,体现了以学生发展为本的新理念。]
三、变式练习、加深理解
1、回到课开始的.关于“老师去学校”的生活情境,现在可以说说什么从家直接去学校这条路近呢?
2、判断下面的线段能不能围成三角形?(“想想做做”第二题)
2厘米、4厘米、6厘米
5厘米、2厘米、5厘米
6厘米、2厘米、5厘米
总结窍门:只要看较短的两边之和大于第三边就能判断能否围成三角形。
3、把一根14厘米长的吸管剪成三段,用线串成一个三角形,能做多少个?如果每小段剪成整厘米长,能剪几个?
[设计意图:三个练习设计体现了一定的层次性,第一个练习前后呼应,让学生认识到数学知识源于生活,又用于生活;第二个练习旨在让学生学以致用,并总结出窍门;第三个练习有一定难度,拓展学生的思维,使不同的学生得到不同的发展,体现了“下要保底,上不封顶”的教学思想。
四、总结延伸
1、师:这节课你对三角形有了什么新的认识?你有那些收获?
2、(课件演示)摇晃的椅子加了一根木棒就稳了,艾非尔铁塔高一千多米,这么多年依然雄伟壮观……这到底什么原因呢?其实这就跟三角形一个重要的特征有关,有兴趣的同学课后可以去查查资料研究研究。
三角形教学设计3
教学内容:北师大版小学数学四年级下册第27--28页内容。
首案编写:李xx
知识与技能:通过操作活动,使学生探索并发现三角形任意两边之和大于第三边。
情感态度价值观:在操作的基础上,通过观察、比较、想象,思考并推理发现三角形边的关系。
过程与方法:通过摆一摆、看一看、说一说、想一想等活动,逐步发现三角形边的关系。
教学重点:经历探索探索的过程,发现三角形边的关系。
教学难点:寻求合理的策略进行验证和推理。
教学方法:观察法、操作法、讨论法、演示法
学具准备:不同长度纸条若干、铅笔、直尺、练习本、小组活动记录表
教学过程:
一.解决问题,发现特点。
1、同学们,我们学习数学就是为了应用。今天,老师想请同学们用学过的数学知识来解决下面的问题。(出示三角形的路线图)如果是你,你会选择哪条路线上学呢?。
看来我们同学都发现了线段a和线段b合起来比线段c长,所以我们选择线段c。
2、(课件出示下一路线图,交换家和书店的位置)如果换成这样的路线图,为了不迟到,你认为又该选择哪条路线呢?
3、如果路线图又换了,你认为选哪条合适?
4、三次的路线图中,三角形的形状、大小变了吗?我们选择的路线变了吗?有没有共同点呢?(退情境图)
我们来概括一下,两边的和比第三边(大)。板书:两边的和大于第三边。
只是ab>c吗?你能添上什么样的词语让我们的发现更准确?(板书任意)
5、小结:同学们,通过刚才的观察与分析,我们发现,在这个三角形中,任意两边的和大于第三边。(板书:观察、分析)
6、这个三角形有这样的特点,是不是所有的三角形有这样的特点吗?我们先试着猜想一下。(板书:猜想)今天就让我们带着这些猜想,来研究三角形边的关系。(板书课题:三角形边的关系)
二、实践操作,验证猜想。
1、数学的学习,能不能只停留在猜想的程度?对了,还要去验证我们的猜想。为了验证其它的三角形中是否两边的和大于第三边,你准备采用什么方法?
举例是我们学习数学经常要用到的方法,那我们就画一个三角形来验证吧。(课间出示活动要求)
小组活动。
汇报。
你的研究说明了得到什么结论?和你的猜想一样吗?
同学们,虽然你们和他的数据不同,验证的.你验证的结论一样吗?指着自己的三角形说一说。
2、虽然我们发现我们同学画出的三角形都具有任意两边和大于第三边的特点,可是三角形能画完吗?看来这样的结论仍然不能让人信服。我们还可以怎样验证?
生:摆一摆。
老师给同学们准备了小棒,希望能给大家带来帮助。
小组活动。
汇报:哪个小组摆成功了?什么原因呢?用老师的小棒试一试。
(学生在黑板上操作。也没摆成。)向刚才你们研究的那样,比一比两边的和与第三边的关系。(板书式子)哪一个式子能说明我们没摆成功的原因?你能看图解释一下吗?
小结。板书:两边的和小于第三边,不能摆成。
3、刚才通过操作,我们发现三角形中,两边的和小于第三边是不行的,那么我们能不能就肯定三角形中两边的和一定大于第三边?
那我们再来验证当两边之和等于第三边的情况。请同桌两人按表格的提示进行研究。(学生活动。)
汇报
(学生板演)看起来真摆成了一个三角形。你有什么想说的?
那为什么看起来就摆出了一个三角形呢?研究数学不仅有实践操作,更重要的是有理性的分析,让数学学习更加严谨。请同学们看大屏幕演示。(播放课件)看来当两边的和等于第三边时,能摆成三角形吗?为了摆成三角形,如果让你调整小棒的长度,你会怎样养调整?
也就是只要符合这样(指板书)的特点就可以摆成三角形。
4、现在我们可不可以宣告猜想是成立的。说一说。
通过你的研究,你认为哪个词语很重要,讲给大家听。看来我们同学确实已经知其然还知其所以然了。
5、小结:同学们,刚才我们通过观察、分析、猜想、多种方式的验证,最终发现三角形任意两边的和大于第三边。
三、运用知识,解决问题。
1、下面哪些线段能围成三角形?
(1)5cm2cm7cm
(2)3cm5cm1cm
(3)8cm5cm6cm
(4)4cm4cm7cm
第3题:你是怎么确定的?用我们刚学到的知识。一定要检查三组边的关系结论出现,研究似乎可以告一段落,但我们继续思考了,结果又有了新的发现。看来学习真的是永无止境。
2、木匠师傅要做一个三角形的支架,已经做好了两条边,分别长5分米、8分米,第三条边他可能要做多少分米?
这个问题我们放在课下研究。
四、知识联想,引发思考。
我们的学习不仅要不断深入地研究,有时还要朝着更宽广的方向思考。本节课我们发现了三角形中任意两边的和大于第三边,那我们联想一下,两边的差和第三边之间有没有一定的关系呢?你猜想可能是什么?这个问题我们也留在课下,同学们可以借助本节课的方法进行研究。适当的联想能让我们的思维更加开阔。(板书:联想)
五、回顾全课,总结整理。
你能把本节课体会最深的地方和大家说说吗?
板书设计:
三角形边的关系
三角形任意两边之和大于第三边
三角形教学设计4
教学目标:
1、通过量、剪、拼、摆等直观操作的方法,让学生探索并发现三角形内角和等于180度。
2、在活动交流中培养学生合作学习的意识和能力,让学生经历猜测探索总结的数学学习过程,在实验活动中体验探索的过程和方法。
3、通过运用三角形内角和的性质解决一些简单的问题,使学生体会数学与现实生活的联系,体会到数学的价值,增加学生学数学的信心和兴趣。
教学重点:
探索发现三角形内角和等于180并能应用。
教学难点:
三角形内角和是180的探索和验证。
教学过程:
一、创设情境,提出问题
师:大家喜欢猜谜语吗?
生:喜欢。
师:下面请大家猜一个谜语(大屏幕出示形状似座山,稳定性能坚。三竿首尾连,学问不简单。
(打一几何图形))
生:三角形。
师:三角形中都有哪些学问?
生:三角形有三条边,三个角,具有稳定性。
生:三角形按角分,可以分成锐角三角形、直角三角形、钝角三角形。
生:三角形按边分,可以分成等腰三角形,不等边三角形,其中等腰三角形又包含了两条边相等的三角形和等边三角形。
生:一个三角形中最多只能有一个直角,最多只能有一个钝角,最少有两个锐角。
生:三角形的内有和是180。
生:(一脸疑惑)
师:(板书:三角形的内角和是180),你有什么疑惑? 生:什么是内角?
生:每个三角形的内角和都是180吗?
(根据学生的问题,在三角形的内角和是180后面加上一个?)
二、自主探索,实践验证
1、理解内角 师:什么是内角?
生:我认为三角形的内角就是指三角形的三个角。
师:三角形的每个角都是三角形的内角,每个三角形都有三个内角。
2、理解内角和。
师:那三角形的内角和又是指什么?
生:我认为三角形的内角和就是把三角形的三个内角的度数加起来的和。
师:为了方便,我们将三角形的每个内角编上序号1、2、3、我们叫它1、2、3,这三个角的度数和,就是这个三角形的内角和。
3、实践验证
师:每个三角形的内角和都是180吗?用什么方法来验证呢?
生:量一量每个角的度数,然后加起来看看是不是180。
师:请大家拿出课前准备的三角形,亲自量一量,算一算。(学生动手量一量)
师:谁愿意把你的劳动成果和大家分享一下?
生:我量的这个三角形的三个内角的度数分别是60、60、60,加起来一共是180。
师:这位同学量的是一个锐角三角形,并且是比较特殊的三角形等边三角形。
生:我量这个三角形的三个内角的度数分别是45、45、90,加起来一共是180。
师:这是我们三角尺中的一个,也比较特殊,是一个等腰直角三角形。
生:我量的是三角尺中的另一个,三个内角的度数分别是60、30、90,加起来一共是180 生:我量的是钝角三角形,三个内角的度数分别是85、60、38,加起来一共是183。
师:你发现了什么?
生:有的三角形的内角和是180,而有的三角形的内角和却不是180。
师:看来三角形的内角和不一定是180。
生:老师,测量会有误差,量出来的不是很精确,那么求出来的结果也不够精确。虽然不都是三个内角加起来不都是180,但都接近180。
生:都接近180就能说一定是180吗?
师:科学来不得半点虚假,看来这个是不能让大家信服的。那还可以用什么方法来验证呢?下面请同学们小组合作,发挥小组成员的智慧,充分利用大家的学具进行验证,比一比哪些组的方法富有新意,开始!
(学生在小组内进行探索验证。教师巡视,参与到学生的研究中)
师:请每个小组选择一个代言人,和大家分享一下你们的智慧。
生:(边展示边交流)我们小组运用了折一折的方法,把三角形的三个内角都向内折,三个内角就拼成了一个平角,也就是180,所以我们小组得出三角形的内角和是180。
师:你折的只是锐角三角形,只能证明锐角三角形的内角和是180,直角三角形,钝角三角形是不是也是这样的?
生:我们小组也有折的直角三角形,钝角三角形。
(其它的成员展示不同的三角形)
师:看这个小组的同学想问题多全面呀,不仅想到了用什么方法,还想到了用不同的三角形进行验证,老师实在是佩服你们组的智慧,让我们把掌声送给他们!
师:哪个小组和他们的方法不一样?
生:我们小组把三角形的三个内角都撕了下来,拼在了一起,正好拼成了一个平角,也就是180。我们也实验了不同的三角形,三个内角都可以拼成平角,所以我们小组得出结论,三角形的内角和是180。
师:这个小组的方法简便,易操作,很好。
生:我们小组成员是这样想的,一个长方形有4个直角,每个直角90,那么长方形的内角和就是360,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180。 师:你们小组很聪明,从长方形的内角和联想到直角三角形的内角和是180,从不同的`角度去思考问题,谢谢你为我们提供了这么好的方法!
4、小结
师:刚才同学们用量、折、剪、拼、计算、推理等这么多巧妙的方法得出了无论是什么样的三角形的内角和都是1800,你还有什么疑问吗?
生:没有。
师:(去掉问号)那就让我们大声地读出来三角形的内角和是1800。
三、巩固应用,加深理解
1、说一说每个三角形的内角和是多少度
师:(出示一个大三角形)这个大三角形的内角和是多少度?
生: 180
师:(出示一个小三角形)这个小三角形的内角和是多少度?
生:180
师:(演示)把这两个三角形拼在一起,拼成的大三角形的内角和是多少度?
生:180
师:为什么每个三角形的内角和是1800,而合起来还是180呢?另外那180去哪儿了?
生:把两个三角形拼成一个大三角形,两个直角不再是大三角形的内角,所以少了180
师:(演示)把一个大三角形分成两个三角形,每个三角形的内角和是多少度?
生:180
2、求下面各角的度数
师:如果老师告诉你一个三角形的两个角的度数,你能说出第三个角的度数吗?
(出)
生:三角形内角和是180,在第一个三角形中,用180-75-28,A=77
生:用180-90-35,C =55。
生:第二个三角形是直角三角形,B是直角,也可以直接用90-35=55。
生:第三个三角形中,用180-20-45,B=115。
3、一个等腰三角形的风筝,它的一个底角是70,它的顶角是多少度?
生:等腰三角形的两个底角相等,所以用180-70-70 4、
师:三角形的内角和在我们的生活中应用很广泛,老师给大家带来一个在建筑中应用的例子。
在设计这座大桥时,如果设计师将斜拉的钢索与桥柱形成的夹角设计成了56,建筑师在造桥时怎样才能确定钢索与桥柱是否形成了这个角度?
生:用量角器量一量
师:量哪个角?量一量斜拉的钢索与桥柱形成的夹角吗?
生:桥面与桥柱形成一个直角,是90,斜拉的钢索与桥柱形成的夹角是56,那么用180-90-56=34,就是斜拉的钢索与桥面的夹角,所以只要让斜拉的钢索与桥面的夹角是34,那么斜拉的钢索与桥柱形成的夹角就是56
师:你真是个善于观察、善于思考的孩子,努力学习,将来一定会成为一名优秀的建筑师。
四、回顾总结,拓展延伸
师:40分钟很快就过去了,你愿意把自己的收获与大家共同分享吗?
生:我知道了三角形的内角和是180。
生:无论是大三角形,还是小三角形,无论是锐角三角形,还是钝角三角形,还是锐角三角形,内角和都是180。
生:把一个大三角形分成两个小三角形,每个三角形的内角和还是180,把两个小三角形拼成一个大三角形,大三角形的内角和还是180。
生:我可以用撕、拼、折等方法来验证三角形的内角和是180。
师:这个同学不仅学会了知识,而且学会了方法,我们只有学会了方法,才能更好地去探究更多的知识。
师:那你现在知道为什么一个三角形内只能有一个直角或一个钝角吗?
生:两个直角的度数之和是180,再加上一个角,三个角的度数之和超过了180,所以一个三角形中最多只能有一个直角。
生:两个钝角的度数之和就超过了180,再加上一个角,就更大了,所以一个三角形中最多只能有一个钝角。
师:我们学习知识,必须知其然并知其所以然。
师:三角形中还有许许多多的学问,让我们在以后的学习中继续去研究。
三角形教学设计5
一、教学目标
(一)知识教学点
使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。
(二)能力训练点
通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力。
(三)德育渗透点
渗透数形结合的数学思想,培养学生良好的学习习惯。
二、教学重点、难点和疑点
1.重点:直角三角形的解法。
2.难点:三角函数在解直角三角形中的灵活运用。
3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边。
三、教学过程
(一)明确目标
1.在三角形中共有几个元素?
2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?
(1)边角之间关系
如果用表示直角三角形的一个锐角,那上述式子就可以写成。
(2)三边之间关系
a2+b2=c2(勾股定理)
(3)锐角之间关系∠A+∠B=90°
以上三点正是解直角三角形的依据,通过复习,使学生便于应用。
(二)整体感知
教材在继锐角三角函数后安排解直角三角形,目的是运用锐角三角函数知识,对其加以复习巩固。同时,本课又为以后的应用举例打下基础,因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的。综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课。
(三)重点、难点的学习与目标完成过程
1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素。这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情。
2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的`过程,叫做解直角三角形)。
3.例题
例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且c=287。4,∠B=42°6′,解这个三角形.
解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用。因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想。其次,教师组织学生比较各种方法中哪些较好?完成之后引导学生小结“已知一边一角,如何解直角三角形?”
答:先求另外一角,然后选取恰当的函数关系式求另两边。计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底。
例2在Rt△ABC中,a=104。0,b=20。49,解这个三角形。
在学生独立完成之后,选出最好方法,教师板书。
4.巩固练习
解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握。为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力。
说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器。但无论是否使用计算器,都必须写出解直角三角形的整个过程。要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.
(四)总结与扩展
1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素。
2.出示图表,请学生完成
abcAB
1√√
2√√
3√b=acotA√
4√b=atanB√
5√√
6a=btanA√√
7a=bcotB√√
8a=csinAb=ccosA√√
9a=ccosBb=csinB√√
10不可求不可求不可求√√
注:上表中“√”表示已知。
四、布置作业
三角形教学设计6
设计理念
教师由过去知识的传授者转变为学生学习活动的设计者和组织者,引导学生在自学文本的基础上自主探究、合作交流,与学生零距离接触。在教学过程中教师设置开放的、面向实际的、富有挑战性的问题情境,使学生在尝试、探索、思考、交流与合作中培养分析、归纳、总结的能力,从而营造一个平等的、和谐的、宽松的良好氛围进行学习。同时,教师注意点拨引导,发挥学生“一帮一”合作学习的优势,培养学生良好的学习习惯。
学情分析
认知分析:学生已学过线段、角、相交线、平行线以及三角形的有关知识,初步掌握了简单说理的方法,为学习全等三角形的有关内容作了准备。
能力分析:学生已初步具备一定的归纳、猜想能力,但个别学生在理解、应用上还须借助老师、同学的帮助,通过教师的指导和同伴的帮助,也会有所收获。对于一小部分基础薄弱、自学能力稍差的学生要提供赏识性评价教学策略,给予个别关照以及适当的精神激励,让他们逐步树立自尊心与自信心,从而完成自己的学习任务。
情感分析:多数学生对数学学习有一定的兴趣能够积极参与研究,但在合作交流意识方面,发展不够均衡,有待加强;少数学生的学习主动性不够强,尚需通过营造一定的学习氛围,来加以带动。
基于以上分析,在学法上,引导学生采用自主探索与互相协作相结合的学习方式,尽量让每一个学生都能参与研究,并最终学会学习。
知识分析
学生已学过线段、角、相交线、平行线以及三角形的有关知识,初步掌握了简单说理的方法,为本节学习做好了准备。同时本节的学习可以丰富和加深学生对已学图形的认识,为学习其他图形知识打好基础。特别是平移、翻折、旋转前后的图形全等是运用全等形的概念得出来的,从而起到巩固新概念的作用。另一方面,掌握这一结论,对学生的某些情况下确定全等三角形的对应元素有帮助。
教学目标:
识与技能
1。知道什么是全等形、全等三角形及全等三角形的对应元素;能找出两个全等三角形的对应角、对应边;
2。知道全等三角形的性质,能用符号正确地表示两个三角形全等;能够运用全等三角形的性质解决简单的问题。
过程与方法
1、经历全等三角形概念的建构过程,经历观察、操作、探究、归纳、总结等过程,获得全等三角形的性质和寻找对应变和对应角的方法。
2、在图形变换的实际操作过程中发展学生的空间观念,培养学生的集合直觉。
情感态度与价值观
让学生在观察、发现生活中的全等形和实际操作中获得全等三角形的体验;在探究运用全等三角形性质的过程中感受到数学的乐趣。
教学重点
探究全等三角形的性质。
教学难点
掌握两个全等三角形的对应角、对应边的寻找规律,迅速正确的指出两个全等三角形的对应元素。
教学方法
针对学生的认知结构和心理特征,为了突出重点,突破难点,本课题的教学坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,以“引导发现,合作探究”教学法为主,辅之直观演示、讨论交流,让学生动手操作,动脑思考,动口交流,动心关注。
学法指导
本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间。通过本课的教学,在教师的组织引导下,倡导学生自主学习、尝试学习、探究学习、合作交流学习。
教学资源
借助PPT软件展示引例及变式训练题组,增大课堂容量,吸引学生眼球,最大限度地激发学生的学习兴趣,优化课堂结构,提高课堂教学效率。
教学评价
在本节中,学生同教师和其他同学共同操作、相互启发、促进、交流,教师适时肯定、给予鼓励与表扬。评价方式为:
(1)课堂提问;
(2)练习反馈;
(3)在本节中,学生同教师和其他同学共同操作、相互启发、促进、交流,教师适时肯定、给予鼓励与表扬。评价方式为:
(1)课堂提问;
(2)练习反馈;
(3)展示。既有学生的自评,又有师生、生生之间的互评,力求在评价中帮助学生认识自我、建立自信,使其逐步养成独立思考、自主探索、合作交流的学习习惯。
教学过程
一、创设情境,导入新课
(1)同一张底片洗出的同大小照片重叠在一起能重合吗?
(2)如果把这些图形叠合起来,会怎样呢?
(说明:能够完全重合的两个图形称为全等形)
(3)把全等图形用线连起来:
【教师活动】
1、提出问题(1)结合学生回答及章前图引出本章内容,板书课题。
2、出示问题(2)和(3),在学生思考并回答的基础上引出并板书节课题。
3、在本次活动中,教师应重点关注:学生注意力并及时评价学生的表现。
【学生活动】
1、按照要求依次进行观察猜想、操作确认。
2、回答老师提出的问题,参与对同伴表现情况的评价。
【设计意图】运用贴近学生生活的图案激发学生探究的兴趣。问题(1),引导学生从图形的形状与大小的角度去观察图形。图形全等在生活中大量存在,创设这样的问题情境,引起学生的有意注意,激发学生主动思考和联想;引导学生进一步联系生活,激发探究的欲望。
【媒体运用】
依次出示三个问题;动态展示相关问题的解答过程及结果,节时增效
二、诱导尝试,探究新知
1、全等三角形概念教学
自学课本2-3页思考2以上的内容,(自学时间5分钟)回答下列问题
(1)什么是全等形?什么是全等三角形?请举例说明
(2)用硬纸板检验下列各图中的两个三角形是否全等?如果全等,试用符号语言表示。若不全等,请说明理由。
(3)把两个全等三角形叠放在一起,__________叫对应顶点,_____________叫对应边,__________________叫对应角。
(4)如图1,若△ABC≌△DEF,则AB的对应边是.AC的对应边是.BC的对应边是;∠A的对应角是.∠B的对应角是.∠C的对应角是.
(5)你能结合以上练习总结找全等三角形的对应元素的一般规律吗?
a、有公共边,则公共边为对应边
b、有公共角,则公共角为对应角
(对顶角为对应角)
c。最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角
2、探索全等三角形的性质
提问:
(1)全等三角形的对应边有什么关系?全等三角形的对应角有什么关系?
(2)如图1,△ABC≌△DEF,请指出图中相等的线段和相等的角。
【教师活动】
1、出示自学提纲,提出要求,组织学生自学。
2、检查自学情况,相机板书全等形的、全等三角形的概念及对应元素找寻规律
3、结合学生回答,用课件动态展示相关问题的答案。
【学生活动】
1、按照要求自学课本内容,解答相关问题。
2、同桌合作完成问题(2),动手操作并互相讨论、探索,感知对折、旋转、平移的两个三角形仍然全等。
3、独立完成问题(3)—(6),相互交流。
【教师活动】口头提出问题,课件演示叠合过程,相机板书性质。
【学生活动】思考教师提出的问题,观察演示过程,总结归纳全等三角形的性质,参与对同伴表现情况的评价。
【设计意图】
1、以学生活动为中心,充分发挥学生学习的主动性。
2、通过学生动手实践、分析、总结出图形变换的本质,加深对全等三角形概念的理解。
3、通过层层深入的设计问题,让学生一步步拨云见日,最终能找出两个全等三角形的对应角、对应边;
【媒体运用】
出示自学提纲;动态展示相关问题的.解答过程及结果。
【设计意图】学会符号语言,使学生在动手实践的过程中理解全等三角形的性质。
【媒体运用】
呈现性质的图形及符号表示形式,增强直观性
三、变式训练,巩固新知
(一)选择填空
1、△ABC≌△BAD,A和B、C和D是对应点,如果AB=5cm,BD=4cm,AD=6cm,那么BC的长是()
(A)6cm(B)5cm
(C)4cm(D)无法确定
2、在上题中,∠CAB的对应角是()
(A)∠DAB (B)∠DBA (C)∠DBC (D)∠CAD
整体优化县域初中数学推导型概念课有效性策略研究
(二)解答下列各题
3、如右图,已知△ABC≌△DEC,B和E,A和D是对应顶点,说出这两个三角形中相等的边和角。
整体优化县域初中数学推导型概念课有效性策略研究
4、如图,△ABC≌△DEC,CA和CD,CB和CE是对应边,∠ACD和∠BCE相等吗?为什么?
整体优化县域初中数学推导型概念课有效性策略研究
【教师活动】
1、课件呈现问题
2、根据学生回答,相机组织相互评价、矫正,并呈现解答过程。
[课件展示]1、依次展示问题。2、结合学生回答相机展示
巡视指导,师生互动,启发学生分析探索充分条件。
分组讨论,发表意见。
【设计意图】
本环节安排了两个梯次练习,其中题组一为概念辨析,旨在巩固全等三角形的性质及对应元素的确定方法;题组二是解答题,旨在检查学生能否从较为复杂的图形变换中检索出简单图形的能力,进一步加深学生对全等三角形对应元素的寻找能力,达到举一反三、触类旁通。
2、进一步强化了学生对性质的认识,又可以训练学生的发散思维,培养灵活运用知识的能力,增强学生的创新意识和创新能力。
【媒体运用】
呈现问题及及部分答案,验证学生解答过程,提高练习的时效性。
四、综合归纳,延展深化
通过这节课的学习,你有什么收获和体会?还有什么疑问吗?
【教师活动】
先引导学生自主小结的基础上,在学生小结的基础上进行概括小结:
【学生活动】
【设计意图】
使所学知识条理化、系统化;让学生在交流中共享,在反思中提升。
【媒体运用】再现本节知识要点。
五、推荐作业,补充升华
必做题:
习题12.1 1,2,3;
选做题:
1、已知⊿ABC≌⊿DEF,且∠A=52,∠B=31,ED=10cm,∠F=∠C,求∠F的度数与AB的长;
2、已知⊿ABC≌⊿DEF,⊿DEF的周长32cm,DE=9cm,EF=12cm,且∠E=∠B,求AC的长;
3、尽量画出两个全等的三角形所拼接的图形,并尝试寻求这两个全等三角形的对应顶点、对应边、对应角。
【教师活动】
课件展示作业题
【学生活动】按照要求自主完成作业,及时弥补
【设计意图】
为使学生的主体作用得以有效发挥,尊重学生的个体差异,为不同学生的发展创造条件,作业层推荐、分类要求。
【媒体运用】PPT课件呈现选做题。
六、板书设计:
课题
一、概念
1、全等形
2、全等三角形
二、方法
1、全等三角形表示:⊿ABC≌⊿DEF
2、找对应元素的规律:
a、公共边整体优化县域初中数学推导型概念课有效性策略研究对应边
b、公共角对应角(对顶角为对应角)
c、大边(角)对大边(角);小边(角)对小边(角)
三角形教学设计7
一、教学目标
【知识与技能】
掌握三角??形全等的“角角边”条件,会把“角边角”转化成“角角边”。能运用全等三角形的条件,解决简单的'推理证明问题。
【过程与方法】
经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。
【情感、态度与价值观】
在探索归纳论证的过程中,体会数学的严谨性,体验成功的快乐。
二、教学重难点
【教学重点】
“角角边”三角形全等的探究。
【教学难点】
将三角形“角边角”全等条件转化成“角角边”全等条件。
三、教学过程
(一)引入新课
利用复习旧知三角形“角边角”全等判定定理:两角和它们夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)
(四)小结作业
提问:今天有什么收获?还有什么疑问?
课后作业:书后相关练习题。
三角形教学设计8
一、教学内容:人教版小学五年级上册教科书P91内容及P92内容。
二、学习目标:
知识与技能:探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,从而发展学生的空间观念和初步的推理能力。
情感态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
三、教学重难点:
教学重点:探究并掌握三角形的面积计算公式,能正确计算三角形的面积。
教学难点:理解三角形面积计算公式的推导过程。
四、教学准备:
课件、三角形纸片、剪刀等。
五、教学过程:
一、复习引入
亲爱的同学们,我们既熟悉,又让我们感到神秘的数学丰富着我们对世界的认识,数学中的数,让我们对生活中的事物的有了量的认识,而形则描绘出了我们美丽世界中物的形状。
让我们一起回忆一下,我们学过哪些图形的面积?它们是如何计算的?
其中平行四边形的面积是我们上节课学习的。谁来说说我们是怎样推导出平行四边形面积的计算公式的?
通过割补等方法把求新学习的平行四边形的面积转化为求已学过的图形的面积?回想一下平行四边形的面积和它的什么有关?它的面积公式是?S=ah
今天就让我们一起来学习这些平面图形中的三角形的面积。谁来说说我们都学过有关三角形的哪些知识?一起回顾一下三角形的底和高。猜一猜它的面积可能跟什么有关呢?我们能否也通过把它也转化成我们学过的图形来研究呢,让我们一起探究它的面积吧。
二、新课探究
请同学们通过操作手中的图形(拼一拼、折一折或者剪拼的方法,看是否把它也转化成我们学过的图形,进而得到三角形的面积公式?)看是否能求出三角形的面积计算公式。
请先看操作要求。
操作要求:
1.前后两排4人小组开展活动,先商讨怎么操作可以求出三角形的面积。
2.按照商讨的方案,动手操作,验证商讨方案。
3.根据操作过程,组内说清楚怎么操作的,怎么得到三角形的面积计算方法。
现在请带着这样几个问题开始操作吧。
问题:
1.你们用两个怎样的三角形拼图?能拼出什么图形?
2.拼出的图形的面积你会算吗?
3.拼出的图形与原来的三角形有什么联系?
请各小组选派一名同学来说一说。
让学生按照问题去说,一边说一边指着图形。
现在的长方形的长和原来的三角形的底有什么关系?现在的长方形的长和原来的三角形的高又有怎样的关系?初步给学生建立长方形和三角形中长和底相等,宽和高相等。
拼成的平行四边形的底和原来的三角形底有什么关系?平行四边形的高和三角形的高又有怎样的关系?引导学生感受平行四边形和三角形是等底等高的。
拼成的平行四边形的底和原来的三角形底有什么关系?平行四边形的高和三角形的高又有怎样的关系?引导学生感受平行四边形和三角形是等底等高的。再次让学生感受拼成的平行四边形和三角形底和高之间的关系。
拼成的正方形的边长和原来的三角形的底有什么关系?现在的正方形的另外一条边长和原来的三角形的.高又有怎样的关系?初步给学生建立长方形和三角形中一条边长和底相等,另外一条边长和高相等。
同学们那你们现在能得出三角形的面积计算公式吗?
大家有说三角形的面积公式为底×高÷2,也有人说为长×宽÷2,还有人说是边长×边长÷2,同学们你们觉得用哪个更合适呢?
这里长方形、正方形和平行四边形之间是什么关系?是的,它们是特殊的平行四边形,所以三角形的面积公式应该是底×高÷2,用字母表示为:S=ah÷2。
同学们现在你们知道三角形的面积该怎么计算了吗?
那现在老师考考大家。
三、巩固练习
请同学们认真审题,仔细计算,这个三角形的底和高分别是几?它的面积应该怎么算?看看谁算得又对又快。
同学们你们看,这是代表我们是少先队员的红领巾,它是什么形状?那它的面积你会计算吗?大家快速计算。
同学们真棒,会计算红领巾的面积了。
看来大家掌握地还不错,那同学们老师再考考大家一点简单的。
二.我会填
(1)、一块三角形草地,底边是3.6米,高是5米,它的面积是多少平方米?
(2)、一个三角形的面积是16平方厘米,与它等底等高的平行四边形的面积是()平方厘米。
三.我是小法官。(对的打“?”,错的打“×”)
(1)两个直角三角形一定可以拼成一个长方形。
(2)两个三角形的面积相等,形状一定也相同。
(3)一个三角形的底不变,高扩大到原来的3倍,面积也扩大到原来的3倍。
同学通过刚才的练习,你认为在求三角形的面积时需要注意什么呢?
四、课堂小姐
同学们,通过这节课的学习你有什么收获?
同学们如果只有一个三角形,你能通过什么方法求出它的面积公式呢?老师这里还有一些方法,你们想知道吗?大家请看。
同学们你们看一个问题可以用不同的方法去解决,老师希望同学们以后碰到问题,也可以勤思考,用不同的方法去解决。
今天的课就上到这,同学们再见。
六、布置作业:数学课本第93页习题。
七、板书设计:三角形的面积
学生作品展示
三角形的面积公式:S=ah÷2
教学反思:在本节课教学中,刚开始引入回顾平行四边形学生都很积极地参与其中,对于新课内容在讲的过程中,在小组探讨的过程中,学生大部分都积极地参与到讨论中,在结论展示的过程中,因为第一个孩子对分发的图形是什么有点不清楚,所以在讲述中出现了问题,孩子也一下紧张起来,后面的讲述就有点少,对于等底等高的渗透地不够深入,后期练习中需要加强。
三角形教学设计9
教学内容:
人教版小学数学五年级上册
作者及工作单位何小婷
西安市长安区灵沼乡冯村小学
教材分析
三角形面积的计算是学生在充分认识了三角形的特征以及掌握了长方形、正方形、平行四边形面积的计算的基础上进行学习的,同时它又是学生以后学习梯形、组合图形的面积计算的基础。
学情分析
三角形面积的知识基础是:三角形底和高的认识以及长方形、正方形和平行四边形面积计算公式。知识的增长点是三角形面积公式。这一知识是后面学生学习梯形面积计算以及今后学习的重要基础。
其探究的过程与方法的'基础是在《比较图形的面积》和《地毯上的图形面积》两个专题中蕴含的割补法、增补法(分割、平移、旋转),以及平行四边形面积推导过程中蕴含的“根据一定的条件和方法将未知转化为已知”的数学思想和方法。能力的增长点在于利用旋转将两个完全相同的三角形拼成一个平行四边形,以及根据一定的条件(平分高或边)利用分割与旋转的方法将一个三角形转化成平行四边形,进一步体验“转化”的思想和方法。
本节课的设计着重在“以学生的发展为中心”的理念,将学生的已有知识结合来自生活常识的实例做为重要的课堂生成资源,运用有趣的教学手段,突破学生的思维定势,给学生充分发散思维的空间。
教学目标
1、探索并推导三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
2、培养学生应用已有知识解决新问题的能力。渗透数学转化思想方法。
3、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
4、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点和难点
教学重点:探索并推导三角形面积计算公式,能正确计算三角形的面积。
教学难点:三角形面积公式的探索过程。
三角形教学设计10
★教学背景分析:本内容是在学生认识了三角形、平行四边形的基础上进行教学的,旨在让学生认识三角形的稳定性及其应用。学生在预习和日常生活中对三角形的稳定性已有所了解,只是还缺少深入的理解和认识。
★教学重点:了解三角形的稳定性及其在生活、生产中的实际应用。
★教学难点:
1.三角形稳定性的得出。
2.体会三角形的稳定性在生产和生活中的应用。
★教学目标
1.通过观察和实际操作得到三角形具有稳定性,四边形没有稳定性。
2.体会稳定性与容易变形在生产、生活中的.广泛应用。
★教学方法
通过动手操作探究三角形的稳定性,并联系生活实际让学生感受数学与生活的密切联系。
★教学过程
一、通过预习,你有什么收获?在小组里交流后再全班交流、分享。
教师预设:
1、三角形具有稳定性。
2、平行四边形容易变形。
3、三角形具有的稳定性及平行四边形容易变形在生活生产中的实际应有。
二、探究新知,解决问题
1.通过实际操作验证三角形的稳定性。拿出木条制作的三角形,请两位力气大的同学用尽全力拉一拉,发现了什么?(形状不会改变,说明三角形不容易变形)
2、再对角拉拉木条制成的四边形你又发现了什么?(四边形容易变形)
3、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后拉动它,它的形状会改变吗?试试看。
4、如图,你能解释盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这是为什么呢?(这样把四边形变成了两个三角形,窗框就不容易变形了)
5、通过生活中的实例感受数学知识在生产和生产中的应用
(1)、找一找,三角形的稳定性在我们的生产和生活中有哪些应用?
课件展示。(木架屋顶、自行车、起重机、衣服挂架、放缩尺)
(2)、平行四边形的不稳定性在我们的生产和生活中有哪些应用?课件展示(伸缩门、活动衣架等)。
三、巩固训练熟练技能练习
1、下列图形中哪些具有稳定
练习
2、要使四边形木架不变形,至少要再钉上几根木条?五边形木架和六边形木架呢?
四、全课总结
1、本节课你学习了什么?
2、通过今天的学习,你想进一步探究的问题是什么? ★课后反思:
本节是四年级数学下册的内容,主要介绍三角形的稳定性,是一节实践课,本节的知识内容较少,而且容易理解,在教学过程中,教师要重视学生的动手能力,让学生经历得出结论的过程,培养学生解决问题的能力,同时让学生体会数学源于生活,又为生活服务。
三角形教学设计11
一、教学目标
1、掌握梯形、等腰梯形、直角梯形的有关概念。
2、掌握等腰梯形的两个性质:等腰梯形同一底上的两个角相等;两条对角线相等。
3、能够运用梯形的有关概念和性质进行有关问题的论证和计算,进一步培养学生的分析能力和计算能力。
4、通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想
二、教法设计
小组讨论,引导发现、练习巩固
三、重点、难点
1、教学重点:等腰梯形性质。
2、教学难点:解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线)。
四、课时安排
1课时
五、教具学具准备
多媒体,小黑板,常用画图工具
六、师生互动活动设计
教师复习引入,学生阅读课本;学生在教师引导下探索等腰梯形的性质,归纳小结梯形转化的常见的辅助线
七、教学步骤
【复习提问】
1、什么样的四边形是平行四边形?平行四边形有什么性质?
2、小学学过的梯形是什么样的四边形。
(让学生动手画一个梯形,并找3名同学到黑板上来画,并指出上、下底和腰,然后由学生总结出梯形的概念)。
【引入新课】(板书课题)
梯形同样是一个特殊的四边形,与平行四边形一样,它也有它的特殊性,今天我们就重点来研究这个问题。
1、梯形及梯形的有关概念
(l)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形。
(2)底:平行的一组对边叫做梯形的底(通常把较短的底叫上底,较长的底叫下底)。
(3)腰:不平行的一组对边叫做梯形的腰。
(4)高:两底间的距离叫做梯形高。
(5)直角梯形:一腰垂直于底的梯形。
(6)等腰梯形:两腰相等的梯形。
(以上这一过程借助多媒体或投影仪演示)
提醒学在注意:
①梯形与平行四边形同属于特殊的四边形,因为它们具有不同的特殊条件,所以必然有不同的性质。
②平行四边形的对边平行且相等,而梯形中,平行的一组对边不能相等(让学生想一想,为什么不能相等)。
③上、下底的概念是由底的长短来定义的,而并不是指位置来说的`。
2、等腰梯形的性质
例1如图,在梯形中,,,求证:。
分析:我们学过“等腰三角形两底角相等”,如果能将等腰梯形在同一底上的两个角转化为等腰三角形的两个底角,问题就容易解决了。
证明:(略)
由此得出等旧梯形的性质定理:等腰梯形在同一高上的两个角相等。
例2如图,求证:等腰梯形的两条对角线相等。
已知:在梯形中,,,求证:。
分析:要证,只要用等腰梯形的性质定理得出,然后再利用,即可得出。
证明过程:(略)。
由此得到多腰梯形的第一条性质:等腰梯形的两条对角线相等。除此之外,等腰梯形还是轴对称图形,对称轴是过两底中点的直线。
3、解决梯形问题常用的方法
在证明梯形性质定理时,我们采取的方法是过点作交于,从而把梯形问题转化成三角形来解,实质上是相当于把采取平行移动到的位置,这种方法叫做平行移动(也可移对角线),这是解决梯形问题常用的方法之—(让学生想一想,还可以用什么样的方法作辅助线来解决梯形问题,多找几名学生回答,然后教师总结,可借助多媒体演示见图)。
(1)“作高”:使两腰在两个直角三角形中。
(2)“移对角线”:使两条对角线在同一个三角形中。
(3)“延腰”:构造具有公共角的两个等腰三角形。
(4)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形。
综上所述:解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决。
【总结、扩展】
小结:(以提问的方式总结)
(1)梯形的有关概念。
(2)梯形性质(①-③)。
(3)解决梯形问题的基本思想和方法。
(4)解决梯形问题时,常用的几种辅助线。
三角形教学设计12
教学要求
1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
3、培养学生动手动脑及分析推理能力。
教学重点
三角形的内角和是180°的规律。
教学难点
使学生理解三角形的内角和是180°这一规律。
教学用具
每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。
教学过程:
一、出示预习提纲
1、三角形按角的不同可以分成哪几类?
2、一个平角是多少度?1个平角等于几个直角?
3、如图,已知∠1=35°,∠2=75°,求∠3的度数。
二、展示汇报交流
1、投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)
2、三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。
3、以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?
4、指名学生汇报各组度量和计算的结果。你有什么发现?
5、大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的'关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。
6、刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?
提示学生,可以把三个内角拼成一个角,就只需测量一次了。
7、请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。
8、三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)
9、拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)
10、那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)11。老师板书结论:三角形的内角和是180°。
12、一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?
13、出示教材85页做一做。让学生试做。
14、指名汇报怎样列式计算的。两种方法均可。
∠2=180°—140°—25°=15°
∠2=180°(140°+25°)=15°
课后反思:
对于三角形的内角和,学生并不陌生,在平时的做题中已经涉及到了。可是学生并不知道如何去验证,所以本节课,重点让孩子们经历体验,感悟图形。从而收获了经验。特别是动手操作将三角形拼成一个直角时,有的孩子将角剪得非常小,很不好拼,在此进行了重点的提示。
三角形教学设计13
一、教材分析
1、学习目标:根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:
知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。能力目标:能结合具体情境发现并提出问题,逐步具有观察、猜想、推理、归纳和合作学习能力。
情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。
2、教学重、难点:
重点:等腰三角形性质的探索及其应用。
难点:等腰三角形性质的探索及证明。
3、突破难点策略:通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。
二、学情分析
刚进入初二的学生观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。
三、教法分析
《数学课程标准》要求教师应激发学生学习的积极性,向学生提供充分从事数学活动的机会,帮助他们进行自主探索和合作交流。为了顺利达到这一目标,引导学生探索性学习,唤起学生的创新意识,我根据教材特点和学生实际,采用了以观察法、发现法、实验操作法、探究法为主的教学方法进行教学。
四、学法建构
《数学新课程标准》指出自主探索与合作交流是学生的主要学习方式,因此,通过本节教学,我将对学生进行以下学法指导:
1、指导学生动眼观察、动手操作、动脑思考、动口表达,注重多感官参与,多种心智能力投入,使学生始终处于主动探索状态。
2、向学生渗透探究、发现的学习方法,培养他们在合作中共同探索新知识、解决新问题的能力。
五、教学模式
本节课设计的指导思想是全日制义务教育《数学课程标准》及新课程改革的教学理念。
《数学课程标准》提出了“问题情境——建立模型——解释、运用与拓展”的基本模式,在此模式指导下,本节课我将采用“创设情境——自主探索——合作交流——引导评价——实践应用——反思归纳”的教学模式,力求着眼于学生探究能力和创造性思维能力的培养,提高学生的自主意识和合作精神。
六、教学程序和设想
《数学课程标准》强调,教师应发扬教学民主,成为学生数学学习活动的组织者、引导者、合作者。据此本节课我分以下环节组织教学。
(一)创设情境,观察联想。
1、多媒体展示电视转播台、房屋人字架,让学生观察找出其中的几何图形(等腰三角形、四边形、梯形)
2、两幅图中都有哪种几何图形(等腰三角形)
从学生身边的生活和已有知识出发,创设情境,引导学生观察、联想,使学生感受到生活中处处有数学,并学会从数学的角度去观察事物,思考问题,激发学生对学习数学的兴趣和愿望。
(二)动手操作,揭示课题。
1、什么是等腰三角形等边三角形它们有何关系
2、请学生动手作等腰三角形ABC,使AB=AC。裁下这个三角形,再动手折叠,当两腰重合时,找出发现哪些结论。
3、小组交流发现的结论。(两底重合,折痕是顶角角平分线,底边上的高,底边上的中线。)
4、小组代表用语言表达得出的结论。
5、多媒体演示折叠过程,再现归纳得出的结论。
6、揭示、板书课题:等腰三角形性质。让学生温习、重现已学相关知识,为学习新知识做铺垫。
波利亚曾说过:“学习任何知识的最佳途径都是由自己去发现。”《新课程标准》要求通过实践、思考探索、交流获得知识,所以我在这里力图通过学生动手操作、动眼观察、动口交流表达,使学生充分感知等腰三角形性质。
(三)独立思考,探究新知。
1、对于观察得出的结论是否能进行论证,请学生动手试一试。
放手让学生决定自己的探索方向,鼓励学生选用不同的方法,把期望带给学生,让学生最大限度地发现自己的潜能,使学生形成自己对数学知识的理解和有效的学习策略。
(四)合作探究,交流创新。
1、当部分同学找到了问题的突破口,而少数找不到思路的同学也充分感知了困难,尝试了困难后,及时组织学生进行合作探究和交流,并作为合作者参与到学生的交流中。
组织学生探索、交流,有利于开阔学生的视野,形成一个既有独立思考,又有互相合作,广泛交流的学习氛围,培养学生合作精神。
(五)引导评价,形成规律。
1、小组合作交流后,请各小组一名代表上台讲解(给学困生提供上台机会,让他们尝试成功的喜悦)共有三种辅助方法:作∠A的角平分线AD、作AD⊥BC、作BC边上的中线AD。通过师生、生生的'相互补充评价,将探究活动引向深入,强化学生的创新思维训练。
2、等边三角形是特殊等腰三角形,它又具有哪些性质呢
学生探索能得出:①每个角都相等,且都是60°,②每边上的高、中线、角平分线互相重合。
运用知识迁移在新知识的基础上探索新的未知,把学生的探究兴趣进一步推向高潮,激励学生要敢于迎接挑战,不断追求,锻炼意志。
3、阅读课本:等腰三角形性质(一)(注意:等边对等角、三线合一的几何语言表达)。培养学生的阅读能力和准确的几何语言表达能力。
(六)实践应用,巩固提高。
例:已知房屋的顶角∠ABC=100°,过屋顶的立柱AD⊥BC,屋椽AB=AC,根据图中条件,你能求出哪些角的度数。
把例题改编成开放题,为学生再一次创设探究情境,进一步培养学生的探究能力和思维的广阔性、灵活性。达标练习(抢答)
①填空。设计基础练习,体现素质教育的全员性,通过抢答训练,更好地激发学生的学习兴趣和求知欲望。
②△ABC中,AB=AC,D为BC上一点,DE⊥AB,FD⊥BC交AC于F点,∠A=56°,求∠EDF的度数通过能力训练题,提高学生分析问题和解决问题的实践能力。
③应用:某厂车间的人字屋架为等腰三角形,跨度AB=12米,为使屋架更加牢固,需安装中柱CD,你能帮工人师傅确定中柱的位置吗说明选用的工具和原理。进一步体现数学来源于实践,又应用于实践,培养学生的应用意识和应用能力。
(七)反思归纳,形成结构。
1、引导学生对学习过程进行小结:
①本节课你有哪些收获(知识、方法、技能),你认为重点是什么
②所学知识能解决哪些实际问题
③本节课所运用的学习方法对你今后学习有什么启示
2、布置作业:(分层布置)
这样进行课堂小结,关注学生个体差异,使每一个学生都有成功的学习体验,得到相应的提高和发展,进一步培养学生的主体意识,锻炼学生的归纳总结能力。
三角形教学设计14
【设计理念】
新课标重视让学生经历数学知识的形成过程,要求教师创设有效的问题情境激发学生的参与欲望,提供足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的形成过程。这样,学生不仅可以掌握知识,而且可以积累探究数学问题的活动经验,发展空间观念和推理能力。
【教材内容】
新人教版义务教育课程标准实验教科书四年级下册数学第67页例6、“做一做”及练习十六的第1、2、3题。
【教材分析】
三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排两次实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。
【学情分析】
1、在学习本课时,学生已经有了探索三角形内角和的知识基础:知道直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,知道他们的四个角都是直角;认识了三角形,知道了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经知道了等腰三角形和正三角形。
2、已经有一部分学生知道了三角形内角和是180°,只是知其然而不知所以然。
【教学目标】
1、通过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。
2、在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作能力,积累基本的数学活动经验,发展空间观念和推理能力。
3、在参与数学学习活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。
【教学重点】
探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。
【教学难点】
验证“三角形的内角和是180°”。
【教(学)具准备】
多媒体课件;锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。
【教学步骤】
一、复习旧知、引出课题
1、你已经知道有关三角形的哪些知识?
2、出示课题:三角形的内角和
【设计意图:也自然导入新课。】
二、提出问题、引发猜想
1、提出问题:看到这个课题,你有什么问题想问的?
预设:
(1)三角形的内角指的是哪些角?
(2)三角形的内角和是什么意思?
(3)三角形的内角一共是多少度?
2、引发猜想
猜一猜:三角形的内角和是多少度?你是怎么猜的?
【设计意图:提出一个问题比解决一个问题更重要。课始在复习三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习自己想研究的内容,无疑激发了学生的学习兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。】
三、操作验证、形成结论
1、交流验证方法:
(1)用什么方法证明三角形的内角和是180度呢?
预设:
①量算法
②剪拼法
③折拼法等
(2)三角形的个数有无数个,验证哪些三角形可以代表所有的三角形?我们的操作过程怎么分工才会做到省时又高效?
2、动手验证
3、全班汇报交流
4、小结:刚才通过大家的动手操作验证了三角形的内角和是180 °度。但动手操作会存在一定的误差,我们的`结论也可能存在偏差。
5、方法拓展
推理验证:用直角三角形的内角和来证明其他三角形内角和是180 °的方法。
6、形成结论:任意三角形的内角和是180 °。
【设计意图:《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。】
四、应用结论、解决问题
1、巩固新知:想一想,算一算。
2、解决问题:等腰三角形风筝的顶角是多少度?
3、辨析训练,完善结论。
五、课堂总结,归纳研究方法
今天这节课你学到了哪些知识?你是怎样得到这些知识的?
六、课后延伸:
用今天所学的方法继续研究四边形的内角和。
七、板书设计:
三角形的内角和
猜测:三角形的内角和是180°?
验证:量拼
结论:任意三角形的内角和是180°
三角形教学设计15
教学内容:人教版义务教育课程标准实验教材小学数学五年级上册第84~85页。
教学目标:
1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。
2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。
3、培养学生的创新意识和合作精神。
教学重点:三角形面积计算公式的推导过程
教学难点:在转化中发现内在联系及推导说理。
教、学具准备:多媒体课件,红领巾,学具(两个完全相同的锐角三角形、直角三角形、钝角三角形、任意三角形若干个)。工具(直尺、剪刀)。
设计思路:
本节课有以下几个特点:
1、利用远程教育资源,通过多媒体课件复习旧知,激发学生的学习兴趣。在复习旧知时,单凭教师枯燥的提问,很难调动学生的兴趣。教学一开始,我利用远程教育资源,恰当地运用多媒体课件,直观动态地将旧知识展示在学生面前,以感染学生,为学习新知识作好铺垫。
2、利用远程教育资源,通过多媒体课件突出重点,化解难点。本节课的重点是探索三角形面积计算公式的推导,如果只有教师的讲解、演示,很难使学生真正理解、掌握新知。因此,在教学中,我力求打破传统教学以传授知识为中心的弊端,精心设计以学生为主体的实践活动,充分利用远程教育资源,发挥多媒体的功能,通过“变色”、“闪烁”、“声音”等手段突出重点,解决难点,加深学生对新知识的理解,激活学生的创造思维,掌握学习方法,培养学生的学习能力。真正发挥学生的主体作用,体现新课程的理念。
教学过程
一、创境引新
1、同学们,你们还记得怎样计算平行四边形的面积吗?(点击课件)
这个公式是怎样推导出来的呢?
电脑动态演示割拼的转化过程。
形成板书:
转化 找关系 推导
学生看大屏幕,
口答:s=ah
学生口述平行四边形面积公式的推导过程。
2、老师这里有一样东西,你想知道吗?(出示红领巾)红领巾是什么形状的?要知道做这条红领巾需要用多大的布,该怎么办?
三角形的面积该怎样计算呢?这节课老师和大家一起研究、探索这个问题。(板书课题)
生可能会说:求出它的面积。
二、自主探索
合作交流1、谈话启思。
我们能不能利用前面学过的方法来探究三角形的面积呢?想一想,用任意两个三角形可以拼成什么图形,下面同学们利用桌上的学具拼一拼、摆一摆,看一看,能拼成什么图形?
2、操作探索。
(1)四人小组合作进行操作、探索。
(2)小组汇报、交流、展示。
学生可能会拼出以下图形:
(3)课件演示拼出的各种图形。
(4)设疑:
这些图形中哪些图形的面积你会计算?
通过操作,谁能告诉老师,什么样的两个三角形能拼成平行四边形?
你能不能很快的把两个完全相同的三角形拼成平行四边形。
老师有一种方法,能很快的将两个完全相同的三角形拼成平行四边形,想学吗?
电脑演示转化的动态过程。
(5)找关系。
师:拼成的平行四边形与原三角形有什么关系?
课件出示:
a.拼得的平行四边形的底与原三角形的底有什么关系?
b.拼得的平行四边形的高与原三角形的高有什么关系?
c.其中一个三角形的面积与拼得的平行四边形的面积有什么关系?
(6)汇报
在学生回答的基础上师用电脑演示。
(7)尝试推导说理。
师:根据你们的发现,你能推导出三角形的面积计算公式吗?
在学生的汇报中形成板书:
三角形的面积=平行四边形的面积÷2
底 × 高
= 底× 高÷2
师:如果用s表示面积,a、h分别表示三角形的底和高,用字母怎样表示公式?
完善板书:s=ah÷2
学生口答:长方形、平行四边形。
生:两个完全一样的三角形能拼成平行四边形。
学生操作,感到不是很容易。
学生观看转化过程。
尝试旋转、平移的方法。
小组讨论交流。
小组派代表发言。
学生讨论后回答,并说说自己是怎样推导的?
学生发言。
学生齐说:s=ah÷2
3、探究用一个三角形进行割补转化推导。
师:我们在推导平行四边形的面积公式时,运用了割补法,你能不能运用割补法将一个三角形转化成平行四边形?
师:下面我们来观察电脑上是怎样操作的?(点击课件)
师:同学们若有兴趣,课后可以继续探索不同的割补方法。
小组合作探究,
汇报交流。
学生观看运用割补法将一个三角形转化成平行四边形过程。
三、实践应用
拓展提高
1、(出示红领巾)这下你会计算这条红领巾的面积吗?计算它的面积要知道什么条件?
你能估计一下它的底有多长吗?(课件出示红领巾)
一条红领巾的面积是多少平方厘米?
2、看图计算面积。
3、你认识这些道路交通标志吗?谁来说说。
(课件出示)
师:我们学校处在交通繁忙的三*路口,车辆较多。为了同学们的安全,交警叔叔想用铁皮做这样两个标志牌,(点击课件)
你来帮他们算算需要多少铁皮?
4、判断。
(1)、一个三角形的底和高是4厘米,它的面积就是16平方厘米。()
(2)、等底等高的两个三角形,面积一定相等。()
(3)、两个三角形一定可以拼成一个平行四边形。()
(4)、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。()
5、课下请同学们找一个三角形的实物进行测量,计算出它的面积。
学生估计底的长度。
学生独立完成,一人板演。做完后集体订正。
学生口述列式。
通过图3知道要用对应的底和高计算面积。
学生说说自己认识交通标志。
学生独立完成,然后交流。可能出现下面两种方法。
方法一:s=ah÷2
=7.8×9÷2
=35.1
35.1×2=70.2(平方分米)
方法二:s=ah
=7.8×9
=70.2(平方分米)
学生判断,并说明理由。
四、评价体验
通过这节课的学习,你一定有话想对同学们说,你最想说什么?(点击课件)
学生之间互相评价。
教学反思:
1、利用远程教育资源,创设教学情景。
利用远程教育资源,创设情景,能生动直观地将教学信息再现于学生的感官。教学情景创设的好,能调动学生的好奇心,又能为学生提供生动逼真、丰富多彩的教学资源,为学生营造一个色彩缤纷,声像同步,能动能静的教学情景,提高学生的学习兴趣,能做到事半功倍的效果。三角形的面积计算是在完全认识了三角形的特征及掌握了长方形、正方形、平行四边形面积计算的基础上学习的,其推导方法与平行四边形面积计算公式的推导方法有相似之处。因此,我利用远程教育资源网搜索并下载有关平行四边形面积公式的课件,通过多媒体展示给学生。这样即吸引了学生的注意力,又激发了学生探索新知识的欲望,同时又使学生明确了探索目标与方向。
2、利用远程教育资源,引导学生自主探索,参与知识的形成过程。
数学知识只有通过学生亲身主动的.参与,自主探索,才能转化为学生自己的知识。本节课,在探索新知的过程中,我让学生利用学具,以小组合作的形式,通过拼一拼、一摆、移一移等方法将两个三角形拼成各种图形。在此基础上,让学生发现只有两个完全相同的三角形才能拼成平行四边形,但学生不会用旋转、拼移的方法。这时,我恰当的运用多媒体课件动画演示,将两个完全相同三角形通过旋转、平移,能很快的拼成一个平行四边形,这样非常直观形象的展示转化过程,学生在好奇的氛围中掌握旋转、平移的方法。渗透了转化的数学思想。并再次观看多媒体课件,发现拼成的平行四边形与原三角形的内在联系,从而推导出三角形的面积计算公式。有效的突破教学难点,帮助学生深刻理解新知识,达到了事半功倍的效果提高教学效率。
割补法是学习几何知识很重要的方法。在推导平行四边行面积计算公式时,学生已初步掌握了割补法。本节课中,当学生用旋转、平移的方法推导出三角形的面积公式后,我又设计让学生运用割补法,将一个三角形转化成平行四边形,来推导三角形的面积公式。这一环节由于学生的能力和知识水平有限,对于割补法有一定的困难,因此,我充分运用多媒体课件动画,直观地展现几种割补方法,以拓展学生的思维能力,提高学生的推理能力。
3、利用远程教育资源,提高学生应用新知识的能力。
练习的设计除了注重趣味性和层次性外,更注重现实性。本节课的练习除了围绕重点设计基本练习巩固新知识外,还设计了培养学生创新意识及实践能力的练习题。为了节约教学时间,调动学生学习的积极性,运用多媒体课件展示练习题是必不可少的。因此我设计了让学生认识道路交通警示标志,并计算两块相同标志牌面积的课件,学生在练习过程中,既发散了学生的思维,又对学生进行了交通安全教育。
总之,利用远程教育资源,,对学生主体性发展、思维能力的培养具有独特的优势,教学中教师适时运用多媒体辅助教学,创设丰富的情景,调动学生多种感官参与教学过程,发挥了最佳的教学效应,从而激励学生去探索、去发现、去创造。
【三角形教学设计】相关文章:
三角形教学设计09-21
【经典】三角形教学设计04-12
三角形的分类教学设计06-28
《三角形的分类》教学设计07-01
三角形的内角教学设计06-05
《三角形特性》教学设计05-11
三角形的认识教学设计05-16
三角形的分类教学设计04-28
《三角形分类》教学设计04-28
三角形教学设计理念11-20