初三数学教学设计优秀

时间:2024-04-28 08:11:24 设计 我要投稿
  • 相关推荐

初三数学教学设计优秀

  作为一名优秀的教育工作者,就不得不需要编写教学设计,借助教学设计可以让教学工作更加有效地进行。那么什么样的教学设计才是好的呢?以下是小编为大家收集的初三数学教学设计优秀,欢迎大家分享。

初三数学教学设计优秀

初三数学教学设计优秀1

  教学目标

  1.使学生掌握百分数、小数互化的方法,并能正确的互化。

  2.在学习互化的过程中使学生认识到这二者之间的内在联系,为后面学习百分数的计算和应用打下基础。

  3.在学习的过程中培养学生的分析思维和抽象概括能力。

  教学重难点

  使学生理解掌握百分数和小数互化的方法。

  教学工具

  课件

  教学过程

  一、活动(一)复习准备

  1、课件出示复习题。

  张宇跳绳个数是陈聪的1.37倍。

  王志祥跳绳个数是陈聪的6/5.

  刘星宇跳绳个数是陈聪的137.5%.

  思考:这三个人谁跳得最多,怎么比较?

  2.引入新课。

  在生产、工作和生活中进行统计和分析时,为了便于统计和比较,我们常用百分数表示一些数据。除了用百分数表示,还可以用什么数表示?

  这节课我们就来学习百分数和小数的互化以及百分数和分数的互化。

  二、活动(二)百分数和小数的互化。

  (1)回忆小数化分数的过程。

  (2)小数要化成百分数,分母应是多少?怎样使它的分母变成100呢?

  三、活动(三) 百分数化成小数

  1、例1:把0.25,1.4,0.123化成百分数。

  ①小数化百分数分几步进行?

  ②学生回答,教师板书:0.25=25/100=25%

  ③1.4怎样化成分母是100的.分数?根据什么?

  ④“做一做”:把下面各小数化成百分数。

  0.38 1.05 0.055 3

  ⑤观察例1的各小数,化成百分数后发生了怎样的变化?

  你所做的练习的各数是不是也发生了同样的变化?这一变化符合什么?

  ⑥现在你能很快地把下列小数化成百分数吗?(口答)

  2.5 0.785 0.16

  2、例2:把27%,135%,0.4%化成小数。

  学生自己试做,学生总结方法

  ①说一说百分数化小数的方法。

  ②观察百分数化成小数发生了什么变化?

  ③把下面各百分数化成小数

  15% 80% 3.5%

  3、小结。

  通过刚才的分析、归纳,谁能说一说百分数和小数怎样互化?

  四、巩固与提高

  1、P80“做一做”

  2、练习十九的第2题

  五、作业

  练习十九的第1题

  课后习题

  练习十九的第1题

初三数学教学设计优秀2

  教学目标

  1、在了解用集合的观点定义圆的基础上,进一步使学生了解轨迹的有关概念以及熟悉五种常用的点的轨迹;

  2、培养学生从形象思维向抽象思维的过渡;

  3、提高学生数学来源于实践,反过来又作用于实践的辩证唯物主义观点的认识。

  重点、难点

  1、重点:对圆点的轨迹的认识。

  2、难点:对点的轨迹概念的认识,因为这个概念比较抽象。

  教学活动设计(在老师与学生的交流对话中完成教学目标 )

  (一)创设学习情境

  1、对“圆”的形成观察——理解——引出轨迹的概念

  (使学生在老师的引导下从感性知识到理性知识)

  观察:圆是到定点的距离等于定长的的点的集合;(电脑动画)

  理解:圆上的点具有两个性质:

  (1)圆上各点到定点(圆心O)的距离都等于定长(半径的长r);

  (2)到定点距离等于定长的的点都在圆上;(结合下图)

  引出轨迹的概念:我们把符合某一条件的所有的点所组成的图形,叫做符合这个条件的点的轨迹。这里含有两层意思:(1)图形是由符合条件的那些点组成的,就是说,图形上的任何一点都符合条件;(2)图形包含了符合条件的所有的点,就是说,符合条件的任何一点都在图形上。(轨迹的概念非常抽象,是教学的难点,这里教师要精讲,细讲)

  上面左图符合(1)但不符合(2);中图不符合(1)但符合(2);只有右图(1)(2)都符合。因此“到定点距离等于定长的点的轨迹”是圆。

  轨迹1:“到定点距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆”。(研究圆是轨迹概念的切入口、基础和关键)

  (二)类比、研究1

  (在老师指导下,通过电脑动画,学生归纳、整理、概括、迁移,获得新知识)

  轨迹2:和已知线段两个端点距离相等的点的轨迹,是这条线段的垂直平分线;

  轨迹3:到已知角两边的距离相等的点的轨迹,是这个角的平分线;

  (三)巩固概念

  练习:画图说明满足下列条件的点的轨迹:

  (1)到定点A的距离等于3cm的点的轨迹;

  (2)到∠AOC的两边距离相等的点的轨迹;

  (3)经过已知点A、B的圆O,圆心O的轨迹。

  (A层学生独立画图,回答满足这个条件的轨迹是什么?归纳出每一个题的点的轨迹属于哪一个基本轨迹;B、C层学生在老师的指导或带领下完成)

  (四)类比、研究2

  (这是第二次“类比”,目的:使学生的知识和能力螺旋上升。这次通过电脑动画,使A层学生自己做,进一步提高学生归纳、整理、概括、迁移等能力)

  轨迹4:到直线l的距离等于定长d的点的轨迹,是平行于这条直线,并且到这条直线的距离等于定长的.两条直线;

  轨迹5:到两条平行线的距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线。

  (五)巩固训练

  练习题1:画图说明满足下面条件的点的轨迹:

  1、到直线l的距离等于2cm的点的轨迹;

  2、已知直线AB∥CD,到AB、CD距离相等的点的轨迹。

  (A层学生独立画图探索;然后回答出点的轨迹是什么,对B、C层学生回答有一定的困难,这时教师要从规律上和方法上指导学生)

  练习题2:判断题

  1、到一条直线的距离等于定长的点的轨迹,是平行于这条直线到这条直线的距离等于定长的直线。( )

  2、和点B的距离等于5cm的点的轨迹,是到点B的距离等于5cm的圆。( )

  3、到两条平行线的距离等于8cm的点的轨迹,是和这两条平行线的平行且距离等于8cm的一条直线。( )

  4、底边为a的等腰三角形的顶点轨迹,是底边a的垂直平分线。( )

  (这组练习题的目的,训练学生思维的准确性和语言表达的正确性。题目由学生自主完成、交流、反思)

  (教材的练习题、习题即可,因为这部分知识属于选学内容,而轨迹概念又比较抽象,不要对学生要求太高,了解就行、理解就高要求)

  (六)理解、小结

  (1)轨迹的定义两层意思;

  (2)常见的五种轨迹。

  (七)作业

  教材P82习题2、6.

  探究活动

初三数学教学设计优秀3

  一元二次方程

  【1.1建立一元二次方程模型】

  教学目标

  1、在把实际问题转化为一元二次方程的模型的过程中,形成对一元二次方程的感性认识。

  2、理解一元二次方程的定义,能识别一元二次方程。

  3、知道一元二次方程的一般形式,能熟练地把一元二次方程整理成一般形式,能写出一般形式的二次项系数、一次项系数和常数项。

  重点难点

  重点:能建立一元二次方程模型,把一元二次方程整理成一般形式。

  难点:把实际问题转化为一元二次方程的模型。

  教学过程

  (一)创设情境

  前面我们曾把实际问题转化成一元一次方程和二元一次方程组的模型,大家已经感受到了方程是刻画现实世界数量关系的工具。本节课我们将继续进行建立方程模型的探究。

  1、展示课本P.2问题一

  引导学生设人行道宽度为xm,表示草坪边长为35-2xm,找等量关系,列出方程。

  (35-2x)2=900①

  2、展示课本P.2问题二

  引导思考:小明与小亮第一次相遇以后要再次相遇,他们走的路程有何关系?怎样用他们再次相遇的时间表示他们各自行驶的路程?

  通过思考上述问题,引导学生设经过ts小明与小亮相遇,用s表示他们各自行驶的路程,利用路程方面的等量关系列出方程

  2t+×0.01t2=3t②

  3、能把①,②化成右边为0,而左边是只含有一个未知数的二次多项式的形式吗?让学生展开讨论,并引导学生把①,②化成下列形式:

  4x2-140x+32③

  0.01t2-2t=0④

  (二)探究新知

  1、观察上述方程③和④,启发学生归纳得出:

  如果一个方程通过移项可以使右边为0,而左边是只含有一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是:

  ax2+bx+c=0,(a,b,c是已知数且a≠0),其中a,b,c分别叫作二次项系数、一次项系数、常数项。

  2、让学生指出方程③,④中的'二次项系数、一次项系数和常数项。

  (三)讲解例题

  例1:把方程(x+3)(3x-4)=(x+2)2化成一般形式,并指出它的二次项系数、一次项系数和常数项。

  [解]去括号,得3x2+5x-12=x2+4x+4,化简,得2x2+x-16=0。

  二次项系数是2,一次项系数是1,常数项是-16。

  点评:一元二次方程的一般形式ax2+bx+c=0(a≠0)具有两个特征:一是方程的右边为0,二是左边二次项系数不能为0。此外要使学生认识到:二次项系数、一次项系数和常数项都是包括符号的。

  例2:下列方程,哪些是一元一次方程?哪些是一元二次方程?

  (1)2x+3=5x-2;(2)x2=25;

  (3)(x-1)(x-2)=x2+6;(4)(x+2)(3x-1)=(x-1)2。

  [解]方程(1),(3)是一元一次方程;方程(2),(4)是一元二次方程。

  点评:通过一元一次方程与一元二次方程的比较,使学生深刻理解一元二次方程的意义。

  (四)应用新知

  课本P.4,练习第3题,(五)课堂小结

  1、一元二次方程的显著特征是:只有一个未知数,并且未知数的次数是2。

  2、一元二次方程的一般形式为:ax2+bx+c=0(a≠0),一元二次方程的二次项系数、一次项系数、常数项都是根据一般形式确定的。

  3、在把实际问题转化为一元二次方程模型的过程中,体会学习一元二次方程的必要性和重要性。

  (六)思考与拓展

  当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元二次方程?这时方程的二次项系数、一次项系数分别是什么?当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元一次方程?

  当a≠1时是一元二次方程,这时方程的二次项系数是a-1,一次项系数是-b;当a=1,b≠0时是一元一次方程。

  布置作业

  课本习题1.1中A组第1,2,3题。

  教学后记:

【初三数学教学设计优秀】相关文章:

优秀小学数学教学设计06-23

初中数学优秀教学设计04-09

小学数学教学设计优秀12-06

初中数学教学设计优秀10-23

数学《圆的周长》优秀教学设计02-28

小学数学《找规律》优秀教学设计06-24

小学数学《小数乘法》优秀教学设计07-04

初中数学优秀教学设计9篇04-09

高中数学优秀教学设计08-05

数学《角的初步认识》教学设计优秀02-04