高一数学解题技巧
高一数学解题技巧1
1、“内紧外松”,集中注意,消除焦虑怯场
集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
2、沉着应战,确保旗开得胜,以利振奋精神
良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的`开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
3、寻求中间环节,挖掘隐含条件:
在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。
因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。
高一数学解题技巧2
1高中数学万能解题模板:特值检验法对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
2高中数学万能解题模板:极端性原则将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3高中数学万能解题模板:剔除法利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4高中数学万能解题模板:数形结合法由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5高中数学万能解题模板:递推归纳法通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
6高中数学万能解题模板:顺推破解法利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
7高中数学万能解题模板:逆推验证法将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
8高中数学万能解题模板:正难则反法从题的'正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
9高中数学万能解题模板:特征分析法对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。:
10高中数学万能解题模板:估值选择法有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
高一数学解题技巧3
数形结合法
高中数学题目对我们的逻辑思维、空间思维以及转换思维都有着较高要求,其具有较强的推证性和融合性,所以我们在解决高中数学题目时,必须严谨推导各种数量关系。很多高中题目都并不是单纯的数量关系题,其还涉及到空间概念和其他概念,所以我们可以利用数形结合法理清题目中的各种数量关系,从而有效解决各种数学问题。
数形结合法主要是指将题目中的数量关系转化为图形,或者将图形转化为数量关系,从而将抽象的结构和形式转化为具体简单的数量关系,帮助我们更好解决数学问题。例如,题目为“有一圆,圆心为O,其半径为1,圆中有一定点为A,有一动点为P,AP之间夹角为x,过P点做OA垂线,M为其垂足。假设M到OP之间的距离为函数f(x),求y=f(x)在[0,?仔]的图像形状。”
这个题目涉及到了空间概念以及函数关系,所以我们在解决这个题目时不能只从一个方面来思考问题,也不能只对题目中的函数关系进行深入挖掘。从已知条件可知题目要求我们解决几何图形中的函数问题,所以我们可以利用数形结合思想来解决这个问题。首先我们可以根据已知条件绘出相应图形,如图1,显示的是依据题目中的关系绘制的图形。
根据题目已知条件可知圆的半径为1,所以OP=1,∠POM=x,OM=|cos|,然后我们可以建立关于f(x)的`函数方程,可得所以我们可以计算出其周期为,其中最小值为0,最大值为,根据这些数量关系,我们可以绘制出y=f(x)在[0,?仔]的图像形状,如图2,显示的是y=f(x)在[0,?仔]的图像。
高一数学解题技巧4
排除解题法
排除解题法一般用于解决数学选择题,当我们应用排除法解决问题时,需掌握各种数学概念及公式,对题目中的答案进行论证,对不符合论证关系的答案进行排除,从而有效解决数学问题。当我们在解决选择题时,必须将题目及答案都认真看完,对其之间的联系进行合理分析,并通过严谨的解题思路将不符合论证关系的条件进行排除,从而选择正确的答案。
排除解题法主要用于缩小答案范围,从而简化我们的解题步骤,提高接替效率,这样方法具有较高的准确率。例如,题目为“z的共轭复数为z,复数z=1+i,求zz—z—1的'值。选项A为—2i、选项B为i、选项C为—i、选项D为2i。”
当我们在解决这个题目时,不仅要对题目已知条件进行合理分析,而且还要对选项进行合理考虑,并根据它们之间的联系进行有效论证。我们可以采取排除法来解决这个问题,已知z=1+i,所以我们可以求出z的共轭复数,由于题目中含有负号,所以我们可以排除B项和D项;然后我们可以将z的共轭复数带进表达式,可得zz—z—1=(1+i)(1—i)—1—i—1=—i,所以我们可以将A项排除,最终选择C项。
高一数学解题技巧5
数列解题技巧
考点:对于数列,我对大家的要求不是很高,我只是希望大家能尽自己的所能,尽量的去多拿分数,如果要是有人能全部做对,我也替你高兴,这类题型,主要是考大家对等比等差数列的理解,包括通项与求和,难度还是有的,其实你要是留意生活的话,这类题还是不是我们想象中那么困难哈。
题型:一般分为证明和计算(包括通项公式、求和、比较大小),解题思路:
证明:就是要求我们证明一个数列是等比数列后还是等差数列,这种题的做法有两种,一种是用,或者,我们就可以证明其为一个等差数列或者等比数列。另一种方法就是应用等差中项或者等比中项来证明数列。计算(通项公式):一般这个题都还是比较简单的,这类型的题,我只要求大家能掌握其中题目表达式的关键字眼(如出现要用什么方法,如果出现要用什么方法,如果出现如果出现),我相信通项公式对大家来说应该是达到驾轻就熟的地步了,希望大家能把握这么容易的分数。
求和:这种题对文科生来说,应该知道我要说什么了吧,王福叉数列(等比等差数列)呀!!,三个步骤:乘公比,错位相减,化系数为一。光是记住步骤没有用的,同时我也希望同学们不要眼高手低,不要以为很简单的,其实真正能算正确的.不一定那么容易的,所以我还是希望大家多加练习,亲自操作一下。对理科生来说,也要注意这样的数列求和,同时还要掌握一种数列求和,就是这个数列求和是将其中的一个等差或等比数列按照一定的顺序抽调了一部分数列,然后构成一个新的数列求和,还有就是要注意了如果题目里面涉及到这个的时候,一定要记住数列相互奇偶性的讨论了,非常的重要哈。
比较大小:这种题目我对大家的要求很低,因为一般都是放缩法的问题,我也不是要求大家非要怎么样怎么样的,对这类问题需要我们的基本功底很深,要学会适当的放大和放小的问题,对这个问题的把握,需要大家对一些经常遇到的放缩公式印在脑海里面。
补充:在不是导数的其他大题中,如果遇到求最值的问题,一般有两种方法求解,一种是二次函数求最值,一种就是基本不等式求最值。
高一数学解题技巧6
高一数学大题结构安排:第三步就是将化简为一个整体的式子(如y=a的形式)根据题目要
A、三角函数与向量的结合求来解答:
B、概率论最值(值域):要首先求出的范围,然后求出y的范围
C、立体几何单调性:首先明确sin函数的单调性,然后将代入sin函数的单调范
D、圆锥曲线围解出x的.范围(这里一定要注意2的正负性)
E、导数周期性:利用公式求解
F、数列对称性:要熟练掌握sin、cos、tan函数关于轴对称和点对称的公式。
高一数学解题技巧7
一、《集合与函数》
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《立体几何》
点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。
三、《平面解析几何》
有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。
拓展阅读:高二文科生数学学法指导
总的来说,可以分为8大部分:函数、数列、立体几何、解析几何、排列组合、不等式、平面向量、二项式定理以及统计。其中,尤其以函数和几何较为难学,同时也是重点内容,要弄清楚它们各自的特点以及相互之间的联系,这些都是最基本的内容。而要做到这一点,首先就要对课本上的一些基本的概念、定理、公式了如指掌,用的时候才能从容不迫,信手拈来。但是,这些往往也是最容易被忽视的——大家都忙着做一道又一道的习题,买一本又一本厚厚的习题书,哪有时间去看课本?
有些同学可能会想,数学又不是、,书上的习题又大都极简单,何必看课本呢?殊不知,课本对于数学来说,也是很重要的。数学有20%的基础题目,只要花上一点点时间把课本好好看看,要拿下这些题易如反掌;反之,要是对一些基本的概念、定理都含混不清,不但基础题会失分,难题也不可能做得很好,毕竟这些都是基础啊。数学的逻辑性、分析性极强,可以说是一种纯理性的科学,要求一定要清晰明了,是不太可能出现做出题目却不知是如何做对的情况的,因而基础知识十分重要。
其次,相当多的习题自然是必不可少的。在理解了基本的概念以后,必须要做大量的练习,这样才能巩固所学到的知识,加深对概念的了解。所谓熟能生巧,数学最能体现这句话的哲理性。数学的思维、解题的技巧,只有在做题中摸索,印象才会深刻,运用起来才会得心应手。当然,这并不是提倡题海战术,适量就可,习题做得太多,很容易产生厌烦情绪。最重要的还是选题,一定要选好题、精题。在这一方面,的建议是很值得考虑的,最好买推荐的参考。同时做题还要根据自己的实际情况。一般而言,要先做基础题,把基础打牢固,然后再逐步加深难度,做一些提高性的题目。每一个知识点都要做一定量的上难度的题来巩固,这样才能将其牢牢掌握做完每个题之后,要回头看一遍(尤其是难题),想想做这一题有什么收获,这样,就不会做了很多题却没有什么效果。
运算也是很重要的一个环节,与的重要性不相上下。培养一种发散性思维,寻求解题的多种,当然非常重要。但是,有一些同学,他们具有很强的思维,能够从多种角度思考问题,可是计算却不强,平时也不训练,时往往是找对了却算错了答案,非常可惜。的确 高中政治,繁琐的运算是令人望而生畏的,但是,在运算过程中你将发现许多新的问题,而运算也就在训练中渐渐提高了。因而,数学方法要与计算并重。一方面,要重视做题方法的训练,从多角度、多方面去思考问题;同时,也要注意锻炼计算能力,注重计算的精确性,而不能偏向一方。
总结。把专题的卷子和综合的卷子分门别类,每一份都进行认真细致的总结,挑出其中含金量最高的题,同时,“旁征博引”,把曾经遇到过的相关的题目总结到一起,一道也不放过。这样总结下来,一定能对各类题型都能够了如指掌,对出题者的出题角度也有了准确的把握。通过对上百份的细致归纳总结,很多同学的数学都有了大幅度的提高。需要强调的.是在总结试卷的过程中一定要深入下去,千万不能走形式,只有深入方能有所收获。在深入的过程中不要在乎时间,有时候,在总结一道大题时,会把相关的题型总结到一起,这项其实是相当繁杂的,绝不等同于弄懂一道题。而做这项的收益也将是巨大的。所以,即使用一个晚上来做这件事也非常值得。千万不要心情急躁,看见别人一道接一道的做题而不安。
平时的学习要注意以下几点:
1、按部就班。数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。
2、强调理解。概念、定理、公式要在理解的基础上。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。
3、基本训练。学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉高考的题型,训练要做到有的放矢。
4、重视平时考试出现的错误。订一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。
的学习有一个循序渐进的过程,妄想一步登天是不现实的。熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。
高一数学解题技巧8
基础知识不扎实
初中教学同样受升学压力的影响,为了挤出更多的时间复习迎考,挤压新课学习时间,删减未列入考试的内容或自认为考试不重要的内容,造成学生知识结构不完整,基础知识掌握不扎实,如初中对函数和平面几何等内容的.新课学习时间不够,学生感到困难,带着这样的阴影学生到高中碰到函数和立体几何等内容的学习就感到恐惧,没有学就产生了畏难情绪。
学习习惯和方法的指导不够
初中教学不太关注对学生学习习惯和方法的指导,忽视对数学思想方法的培养和渗透(现在学生的认知水平是可以接受的),热衷于通过大量的练习模仿来掌握解题方法,如对初中二次函数的学习。
【高一数学解题技巧】相关文章:
高一数学解题技巧07-03
高一数学解题技巧06-05
高一数学解题技巧(10篇)07-14
高一数学解题技巧精选10篇07-14
数学解题技巧12-03
数学解题技巧初中07-09
数学常用解题技巧12-04
中考数学的解题技巧09-23
数学解题技巧15篇12-03
数学解题技巧(15篇)12-04