电力电子技术

时间:2024-07-22 15:30:04 电子技术/半导体/集成电路 我要投稿

电力电子技术15篇(优秀)

电力电子技术1

  随着社会经济的快速发展,各种能源消耗速度极大,能源短缺已成为社会生产发展过程中亟待解决的问题。近年来,新能源的开发和利用,为解决能源短缺问题提供了一条新的道路,而电力电子技术在新能源的开发利用中扮演着重要的角色。本文通过对电力电子技术的概述、电力电子技术在新能源领域的应用、在电力电子技术运用过程中应注意的问题等方面的着重介绍,让人们充分认识和了解电子电力技术并加强对其合理有效充分的利用。

  一、电力电子技术概述

  电力电子技术,又称功率电子技术,学术上称电力电子学,是指应用于电力领域的电子技术,使用电力电子器件对电能进行变换和控制的电子技术。电力电子技术包括电力电子器件、电力电子设备和系统及其控制三个方面,涉及电力电子器件(上游)、电力电子设备和系统(中游)、电力电子技术在各个行业的应用(下游)三个领域。电力电子技术将各种能源高效率地变换成为高质量的电能,是采用电子信息技术改造传统产业的有效技术途径。电力电子技术具有高效、节能、省材的特点,对于我国乃至世界范围内的经济发展具有极为重要的作用,是现代科学、工业和国防的重要支撑技术。

  二、电力电子技术在新能源领域的应用研究

  电力电子技术是实现节能环保和提高人民生活质量的重要技术手段,在执行当前国家“发展新能源”和“节能减排”基本国策的过程中起着重要的作用。下面以一些能源的开发利用为例,对电力电子技术在新能源领域的应用进行研究。

  1、水力发电

  没有水就没有生命。这句话充分说明了水的重要性:水是生命的源泉,地球上没有水,也就不会有生命的存在。有聪明才智的人抓住水在流动过程中产生的动能可以充当天然的推动力这一有利条件,再加上一些物理知识和电路原理,以著名的三峡水电站为标志的一大批水电站挺立起来了。这一创新,不仅仅降低了对媒体等不可再生能源的消耗,更创造性的为人类寻找可再生能源并加以利用的道路提供了方向。在水利发电的基础上,一系列电力电子技术在新能源的开发利用中得到了创新。

  2、风力发电

  风是大自然产生的一种自然现象,具有清洁、可再生、储量大的特点,而风能则顺理成章的成为了一种能够被高效利用的低碳能源。风力发电技术的`出现,可以有效的减少二氧化碳的排放量、减缓全球气候变暖,为我们保护环境、节约能源、减少资金成本带来了突破性进展。这项技术不但将取之不尽、用之不竭的风能转换成源源不断的电能,而且有利于缓解能源危机和供电压力,随着风电技术的不断发展和完善,风力发电组等产品的数量和质量逐渐增多增强,在价格和效用上自然也会更具优势。在当前形式下,除水电技术外,风力发电技术比其它可再生能源技术更为成熟、成本更低、对环境破坏更小,因此还有改善生态环境的重要作用。

  3、太阳能发电

  在大自然赐予地球的能源中,太阳能也是一种取之不尽、用之不竭的清洁能源之一,阳光是人类赖以生存的因素之一,世间万物离开了太阳就难以继续维持生命。据统计,我国2/3以上国土面积的年日照时间在2200h以上,年辐射总量在502万kJ/m2以上,为太阳能的利用创造了丰富的资源和有利条件。目前太阳能在利用中,主郭建要采用了三种技术:太阳能光电技术、太阳能光热技术和太阳能光伏发电技术。这些技术的产生和发展,对于新能源的开发利用起到了巨大的作用。太阳能电池是电力电子技术在新能源领域的应用中的典型案例。太阳能热水器、蔬菜大棚的照明、药材和果脯的干燥、太阳能路灯等,都是利用了太阳能发电发热的原理。可以说,太阳能发电技术,在未来生活中具有更广泛、更有前途的发展前景。

  4、潮汐能发电

  在波涛汹涌的大海上,潮汐狂妄的拍打着海面,巨大的潮汐能为新能源的开发和利用带来了契机,通过电力电子变换装置,发电机将巨大的潮汐能转换成电能,也就是能使这些波动能(潮汐能)的电能以恒压恒频方式输出,再通过其他的电力装置,为电力系统提供电力,其提供的电能既能源源不断输出,又对克服能源危机(煤、石油、天然气等化石类能源匮乏)提供了重要的解决措施,可以说,自然界的可再生资源也是无穷无尽的,只要我们拥有一双善于发现的眼睛,并采用先进的各项技术加以不断创新和完善,就可以在循环利用的基础上不断创造出各种新的清洁、高效、可再生、无限利用的能源。

  三、结束语

  由上述诸多例子中可以看出,新能源的开发和利用已成为一种优势更大的发展趋势,而电力电子技术在这项伟大的工程中发挥着难以想象的重要作用。目前,电力电子技术对我国来说,在大气污染治理、节能环保、电力系统及国民生活等等中的应用非常广泛,而从大方面来讲,电力电子技术在国民经济与人民日常生活中正发挥越来越重要的作用。由此我们可见,电力电子技术不仅是国民经济支柱产业的重要组成部分,也是未来技术的发展趋势之一。我国政府相关职能部门已经采取了一系列有力措施,将发展电力电子技术作为在相当长的一段时间里的重点发展的关键技术。新能源发电系统给电力电子技术提供了新的方向,也为从事可再生发电能源系统的研究提供了新的思路。在国家政策强有力的推动下,电力电子技术正迎来其发展的大好时机。

  作者:郭建 单位:南京磐能电力科技股份有限公司

电力电子技术2

  摘要:随着科学技术的不断发展,我国电力领域也是取得了不小的成就。为了更好的实现现代化电力发展目标,将电子技术与电力事业相融合,形成新颖的电力电子技术,以高新技术知识为基础,为我国电力事业提供方便、快捷的生产途径。也为人们的生产生活提供源源不断的能源需求,因此本文也会针对电力电子技术的发展及应用进行详细的讨论,充分体现电力电子技术在社会发展中的重要性。

  【关键词】电力电子技术;发展应用

  电力电子技术是一种科学性和实用性较高的新型电力技术,已经成为当今技术发展的主流,对我国的经济建设发展有着很重要的影响。其使用速度也是在逐年上涨。主要用在电能的获取、传输、交换和利用等环节,有效的提高了用电效率,提升供电质量,同时也为能源的节省创造了有利条件,为环境保护提供了可靠的保障。本文通过阐述电力电子技术的发展及应用,充分体现电力电子技术对于国民经济水平提高的重要性。

  1电力电子技术的发展

  1.1电力电子技术的晶闸管时代

  电力电子技术的晶闸管时代起源于20世纪60年代末期,主要是为各工业领域提供大功率的用电能源。通过大功率硅整流器传送,将交流电转化成直流形式的电消费,应用在有色金属、化工原料、电气机车、地铁电车、轧钢、造纸等大型工业领域中。这种大功率硅整流器的研发在当时的社会发展中占有着很重要的地位,曾掀起了各地建立硅整流器厂的热潮,因此被人们称作电力电子技术的晶闸管时代。

  1.2电力电子技术的逆变时代

  电力电子技术的逆变时代始发于20世纪70年代初期,以自关断器件为基础,创新出交流电机,也被称作是逆变时代。其优点是交流电机中的变频调速可以自动的调节电流量的使用频率差异,将多余电能储存起来,有效的降低了电能源的浪费。因此在当时交流电机的发展也是十分迅猛,尤其是其构建组成的元件,如:晶闸管、巨型功率晶体管及门极可关断晶闸管,更是发挥了其节电的优势。尽管电力电子技术在那个年代已经实现了整流和逆变的功效,可所产生的工作频率较低,仅适用于中低频范围内,根本无法满足日后的工业发展需求。

  1.3现代电力电子时代

  进入90年代初期,我国研制出了功率半导体复合器件,集结了多种电力技术的优势,如:高频、高压、大电流等功效。可以将以低频技术处理问题为主的传统电力电子学有效的转化成以高频技术处理问题为主的电力电子学,充分体现了电力电子技术的现代化发展。同时各种应用在新型器件上的集成电路技术也在以大批量的走势向复合化、模块化的方向发展,经过这样一系列的转变,可以使器件体积变小、结构紧凑,并结合了其他器件的优势,完全符合新时代的电力电子技术标准。另外在器件性能上也发生了很大的转变,不仅提高了器件的容量,也提高了其工作效率。此外随着科学技术的不断进步,电力电子技术逐渐向人工智能技术的方向靠拢,各种新型的器件控制方法也在大范围内广泛应用,尤其是智能学科中的神经网络系统,利用强大的.混合人工技术,对半导体复合器件采取相应的控制技术和评估技术,使其更好的应用在各工业生产中,对故障监测和故障耐力起到很大的功效。

  2电力电子技术的具体应用

  2.1电力电子技术在再生能源中的应用

  随着科学技术的快速腾飞,我国可再生能源在电力事业的发展中占有着重要的作用,其发电形式也是多种多样,如:风力发电、太阳能发电、水力发电及生物质能发电等形式。其中风力发电是再生能源中最为关键的组成部分,具有发电施工的周期较短、投资灵活、占地面积小、无污染等特点,为电力发展带来巨大的经济效益和社会效益。随着电力电子技术和变频调控技术的发展,其在风力发电中的应用也是越来越广泛。可以大大的提高电能源生产量,还可以有效的控制风电机组,并在电能转换和改善电能质量上都有着显著地成果。是再生能源中不可或缺的重要组成部分。

  2.2电力电子技术在电力节能中的应用

  进入新时期以来,电力在现代工业中的应用范围越来越广泛,主要是因为电力具有清洁、无污染、稳定性及实用性较高的特点。现如今电力供给已经全面的深入到工业的各个领域中,对其发展和经济效益都有着很大的促进作用。然而在实际的运用中,我国工业用电还是存在很多不合理的现象,如:用电效率低、大量浪费等。因此为了缓解这些用电难题,将电力电子技术应用在电机和电机控制方面,则大大提高了供电效率,并且每年可为我国节省总电量的百分之十八的电能,由此可见电力电子技术对于能源节省的重要性,可以充分保证我国能源供给情况,实现电力事业的可持续发展目标。

  2.3电力电子技术在电动汽车及工业机器人控制系统中的应用

  随着时代的进步和发展,我国在电动汽车和工业控制系统技术改造中也发生了翻天覆地的变化,利用电力电子技术手段实现了电动汽车的信息化发展,将其与汽车驱动装置有效的融合,形成车速性能高、噪音低、无污染、能源效率高的现代化灵敏电动车型,符合当代绿色交通运输。工业机器人的产生代表着我国工业向信息化、科技化的方向发展,不仅提高了生产效率也为生产技术工人减轻了工作负担,极大的改善了传统工业产品的质量。再其控制系统中加入了电力电子技术可以有效的提升机器人的灵敏度,让其进行更为精细的生产加工程序,同时通过调速变频装置,还可以控制机器人的工作速度,避免其在工作和休息时耗费能源差异过大,引起不必要的能源浪费情况。由此可见,电力电子技术无论是应用在电动汽车方面还是应用在工业机器人控制系统上都有着很重要的作用。

  3结束语

  综上所述,电力电子技术作为一种时代进步的科技产物,有着十分显著的实用性和安全性。被越来越广泛的应用在各生产领域中,几乎所有的电子产品都离不开电力电子技术的渗入,不仅提高了生产效率,增大生产效益,也为我国能源的节省做出了巨大的贡献,是能源发展中不可缺失的组成部分,随着我国国民经济水平的不断提高,电力电子技术也会不断的进步和完善,为我国节省更多的能源,更好的为国家经济建设贡献力量。

  参考文献

  [1]刘增金.电力电子技术的发展及应用探究[J].电子世界,20xx(09):15-16.

  [2]朱磊,侯振义,张开.电力电子技术的发展及应用[J].电源世界,20xx(02):33-35.

  [3]刘莉宏.现代电力电子技术的发展及其应用[J].北京工业职业技术学院学报,20xx(01).29-30.

电力电子技术3

  【文章摘要】信息技术的快速发展推动许多学科进一步完善,以电力电子技术为例,其本身具有较强的理论性、实践性等特征,涉及的波形图、电路图也较多,相关设计人员需掌握较多相关理论,且在设计分析中面临较多的难题。在此背景下便提出仿真技术,即Matlab,其可通过相应模型的构建使所有波形结果具有可视化特征。对此,本文将对电力电子设计中Matlab应用的必要性、基于Matlab的系统模块构建以及系统仿真思路进行探析。

  【关键词】Matlab;电力电子技术;应用

  0前言

  作为近年来能够合理控制电能形态的技术,电力电子技术在信息技术推动下得到快速发展,其以自身相关器件转换与控制电能,无论数瓦电器或数千瓦输电系统,都可通过电力电子装置进行控制。据统计分析,国外许多发达国家依托于电力电子技术所转换的电能达到90%,而这一转换过程的实现主要得益于其在仿真过程中能够取得精确的结果。因此,本文对电力电子技术中Matlab的应用研究,对促进电力电子技术发展具有十分重要的意义。

  1电子电路设计中Matlab应用的必要性

  目前,电子电路设计中逐渐强调以自动化为主,通过原理图设计与仿真相应的电路,使电子电路的设计达到最优,并分析电路中的最坏条件等。然而这些设计自动化目标的实现,要求将控制领域中的典型代表Matlab引入其中,其具备基本交互式编程能力,且较多图像或数据处理以及原理图设计等都可利用其完成。特别Matlab近年来发展中,版本处于不断更新态势,且有较多系统模块与模型如电力电子器件、电路以及电机等都被囊括其中。加上完善中将Sinulink环境引入其中,更能容纳较多关于电力电子的相关模块,为电路电子设计提供具体的指导。同时,电力电子系统在构造中,将Matlab引入其中,也可直接通过仿真计算以测出相关电路结果,无需考虑以往因硬件试验条件缺失而难以仿真的难题,保证设计精准性的同时减轻设计人员的负担。因此,将Matlab引入电子电路设计中极为必要。

  2基于Matlab的模型构建

  模型构建中主要需考虑到Simulink环境,根据电气系统设计要求,将其融入SinPowerSystems中,该仿真系统对电力电子系统以及电路都较为适用,而且能够仿真电路传输过程以及电机拖动系统等。其中,SinPowerSystems模块在内容上应以晶闸管、整流二极管、Mosfet模块、Diode模块等为主,同时的也容纳较多集成度较高的模块与底层模块等,如Universalbridge、Thyristor模块。实际建模过程中由于需考虑整流系统,所以对各模块要求合理建模。具体建模过程中,主要需考虑Sinulink系统构建、仿真等问题,实现的步骤体现在:①将Sinulink进行打开,可从Matlab中寻找具体内容;②完成Sinulink构建后,对其进行命名,可使模型后缀名界定在mdl上;③根据电子电路设计需要,在模块集中进行相应模块的寻找,将其向所构建的模型放置;④进行电力电子系统的构造,并对该系统进行仿真;⑤综合分析仿真结果,得出最终结论。

  3基于Matlab系统仿真研究

  电力电子技术实际设计过程中,其目标多集中在如何控制与变换电能方面,其中电力可细化为直流电力、交流电力为主,前者多表现在干电池、蓄电池方面,而后者集中在公用电网方面。但电力由电源获取,应在电力变换的基础上才可满足电力电子设计要求,所以应做好电力变换工作。现行电力变换中,常用的方式主要以直流变与交流变直流、交流为主。一般被叫做整流的为交流变直流,而作为逆变的则为直流变交流;直流变直流主要指不同电压下直流的转变,交流变交流则叫做的.交流电力控制,侧重于变换电力或电压。明确这些内容的基础上,便可引入Matlab完成仿真。具体仿真过程主要表现在以下几方面。

  3.1仿真过程在整流电路中的实现

  近年来整流电路在应用过程中,多以三相桥式类型为主,所以将Matlab引入后,主要对三相桥式类型电路进行仿真。具体仿真中,首先需做好Sinulink环境的构建,在此基础上完成三相桥式系统结构模型的构建。实践研究发现,该系统结构中要求电桥模块需保证具有较高的精度,且在触发脉冲方面,也需引入具体的脉冲发生器,这样可达到整流电路要求。完成仿真模型构建后,便可得到仿真结果,若利用相应的波形图表示,整个三相桥式电路在整流结果上将更清晰的显示出来,仅需对控制角进行操作,便可得到整流波形变化结果,为电路设计提供准确的参考。

  3.2仿真过程在逆变电路中的实现

  对于逆变电路,其主要指直流电转换为交流电。目前,逆变电路的应用也较为常见,如较多直流电源包括太阳能电池或蓄电池等,在对交流负载进行供电时要求逆变电路作用充分发挥。同时,也有许多电力电子装置,如感应加热或不间断电源以及变频器等,其在设计过程中都需将逆变电路作为核心内容。所以电力电子技术中关键的内容在于逆变电路方面。需注意的是,区别于直流侧电源,逆变电路通常以电流型、电压型两种形式为主,在仿真过程中需通过Matlab做好全桥电路的构建,在此基础上完成仿真过程。根据实践发现,整个构建的结构中,全桥逆变在构成上主要以四个桥臂为主,且各桥壁需依托于PWM发生器向其提供脉冲,这样便可通过仿真结果判断逆变后负载电流、电压波形等。综合来看,无论将Matlab用于整流电路或逆变电路中,仅需保证Sinulink环境合理构造,将相关电路与具体设计内容进行仿真,便可得到相关的波形与设计性能指标,为电路电子设计提供合理指导。

  4结论

  电力电子技术中引入Matlab能够为设计提供更多的指标数据。实际引入中应正确认识电力电子技术、Matlab的基本内涵,以Matlab为依托进行电路电子模型的具体构建,在此基础上将整流电路与逆变电路引入具体仿真过程中,可结合仿真结果分析实际设计中需注意的问题,能够保证电路电子的设计更为完善,推动电力电子技术的进一步发展。

  【参考文献】

  [1]龚爱平.基于嵌入式机器视觉的信息采集与处理技术研究[D].浙江大学,20xx.

  [2]牛天林,樊波,张强,赵广胜.Matlab/Simulink仿真在电力电子技术教学中应用[J].实验室研究与探索,20xx,02:84-87.

  [3]李鹏飞,叶文.MATLAB仿真软件在“电力电子技术”教学中的应用[J].中国电力教育,20xx,03:85-87.

电力电子技术4

  摘要:“电力电子技术”是高等学校电气工程及其自动化专业的专业课,课程内容复杂,涉及多门学科。本文在分析独立学院学生特点和“电力电子技术”课程特点的基础上,对“电力电子技术”课程进行了教学方法的改革,提出基于仿真软件的“实例教学”方法,强化了课程教学效果。

  关键词:电力电子技术;仿真软件;教学改革

  一、引言

  “电力电子技术”是独立学院电气工程及其自动化专业的一门专业课,课程理论性强、概念多、与工程实际联系紧密。电力电子技术的应用范围广泛。它不仅用于一般工业,而且广泛用于交通运输、电力系统、通信系统、计算机系统、新能源系统等,在照明、空调等家用电器及其他领域中也有广泛应用。现今,电力电子技术正以令人瞩目的发展速度,改变着我国工业的整体面貌。同时,对社会的生产方式、人们的生活方式和思想观念也产生了重大影响,随着与信息科学、计算机科学和能源科学等相关学科的交叉融合,它正在向智能化、网络化和集成化的方向发展[1]。近几年金城学院发展迅速,建立了很多新的实验室,配备了相应的软硬件设施,同时学院的生源水平也有了很大提高,用人单位招聘时的要求也在不断提高,这些变化促使学院提出新的培养目标,即“高素质应用型人才”,对于电气工程及其自动化专业而言就是培育掌握电气工程及其自动化领域的理论知识;具有创新精神和实践应用能力的电气工程及其自动化领域的高级工程技术人才。“电力电子技术”作为重要的专业课,原先的授课方式已无法满足要求,必须做出相应调整。

  二、“电力电子技术”课程的特点

  “电力电子技术”课程的主要内容为电力电子器件、整流电路、逆变电路、直流-直流变流电路、PWM控制技术、电力电子器件应用的共性问题。课程主要特点为:1.理论性强、概念多:“电力电子技术”课程要求学生先修电路、模拟电子技术、数字电子技术等课程,同时涉及“电子学”、“电力学”、“控制理论”,属于交叉学科,所以相关概念较多,内容复杂。2.实践性强:“电力电子技术”是一门实用性课程,学习的目的是解决工程应用中的实际问题。对学生的项目设计开发能力、制作与测试研究能力都有较高要求。

  三、仿真软件在课程教学中的应用

  1.仿真软件介绍Saber软件是美国Synopsys公司推出的.一款系统仿真软件,可用于电子、电力电子、机电一体化、机械、光电、光学、控制等不同类型系统构成的混合系统仿真,为复杂的混合信号设计与验证提供了一个功能强大的混合信号仿真器,兼容模拟、数字、控制量的混合仿真,可以解决从系统开发到详细设计验证等一系列问题[2]。该软件可以对电源的各个组成部分及整体运行状态进行模拟,并对结果进行分析。Saber软件仿真真实性强,网络学习实例较多,适用于“电力电子技术”课程的教学及学生电源开发设计验证。Matlab软件是美国MathWorks公司出品的一款仿真软件。其中的Simulink提供了可视化开发环境,可以在基本模块库及电气模块库中选择合适的模块搭建电源系统进行电源整体或部分的运行状态仿真。Labview软件由美国国家仪器(NI)公司研制开发,使用的是图形化编辑语言G编写程序,产生的程序是框图的形式。Labview开发环境集成了工程师和科学家快速构建各种应用所需的所有工具,旨在帮助工程师和科学家解决问题、提高生产力和不断创新,是开发测量或控制系统的理想选择[3]。三种仿真软件易于获得,可互相通信,网络学习实例较多,方便学生自学,对于后期电源实物研制或电源研究是不可或缺的部分。

  2.结合仿真软件的实例教学“电力电子技术”初始的授课方式就是基本理论的讲解,这样的教学方式使得内容较分散,学生没有电源整体概念。在授课内容和方式上结合仿真软件,采取整体-分布-整体的讲解方式。首先,以具体的应用实例(比如一个笔记本电脑用的电源适配器)说明一个完整的电源内部的组成,让学生有整体概念;其次,对每一部分的内容进行基本工作原理和特性的讲解,再回到整体,介绍如何进行整体电源的设计。在讲解过程中结合三种仿真软件,每讲解完一个部分,就用仿真软件搭建相应的模型,在仿真环境下演示此部分的特性或运行原理。最后,演示完整电源的仿真运行及结果。运用这样的授课方式可提高学生学习兴趣,让学生对所学内容有直观了解,同时仿真软件的应用对学生后期的发展有较大帮助。学生可用仿真软件做电源前期的设计验证工作,特别是一些较复杂电源,此步骤不可缺少;在电源研究过程中出现问题时,可在仿真环境中模拟,找到问题的所在并解决问题;在课堂教学中结合仿真软件可不用开设专门的课程来学习软件,节省了相应的时间,提高了教学效率。

  四、结语

  在“电力电子技术”的教学改革中,根据学生的特点和社会需求进行教学方式改革,内容上以基础知识为重,注重实践应用,利用仿真软件进行实例教学,这样可以调动学生的学习积极性,收到良好的教学效果。

  参考文献:

  [1]王兆安,刘进军.电力电子技术(第5版)[M].北京:机械工业出版社,20xx.

电力电子技术5

  一、智能电网对电力电子技术的要求

  目前,电力电子技术虽然取得一定的进步但是仍然存在诸多的问题。例如如何让它实现最大的优化控制改善电能的质量、减小对电网的污染,这都是需要解决的问题。安全使用电力电子器件是另一个急需解决的问题,在安全的前提下才可以实现其他的应用。我国的电网建设和电网结构虽然相对稳定但是仍存在很多问题,需要提高电网建设的要求和利用先进电力电子器件提高电网输出电能的质量。而随着经济的不断发展,电力需求量也越来越大,大电网的建设必然是今后电力事业发展的方向,这也就意味着电网的结构也会越来越复杂,我国地理地狱辽阔气候复杂,因此电网所面临的条件很复杂,这就需要利用先进的电力电子技术,采用先进的`电子装置来调控电力系统,以增强电网的构架,避免电网故障的扩散,并增强电网的故障抵抗和故障恢复能力,这些问题都是可以通过先进电力电子技术的应用得到改善。社会的进步对电能的需求量变大同时对电能的质量要求也是越来越高,输出电能质量如果达不到要求会对整个电网产生重大影响,带来的损失也是不可估量的。先进电力电子设备可以改善电网电能质量,大大的提高输电效率和经济发展。能源是整个人类社会存在与发展的物质基础,更是经济快速稳定增长的根本驱动力。随着常规化石能源的不断消耗以及生态平衡、环境污染等能源安全问题的日益突出,以清洁无污染、循环可再生为特点的太阳能、风能、生物质能等新能源的开发利用越来越受到世界各国的高度重视。我国虽然是当今世界上最大的发展中国家,能源资源总量丰富,但是资源分布不均衡,开发利用难度较大,且人均拥有量较低。当前正值经济飞速发展、能源高消耗时期,以常规化石能源为主要能源造成的环境污染问题与经济快速发展之间的矛盾较为突出。为了从根本上解决我国的能源问题,满足经济稳定增长和社会和谐发展的需要,必须保护生态环境,实行能源的可持续发展战略。一方面要大力提高能源利用效率,另一方面则是加快风能、太阳能等新能源的开发利用进度。这些新能源的发对电力电子器件的要求更高。

  二、先进电力电子技术在智能电网中的应用

  柔性交流输电包括SVC和STATCOM,通过SVC进行无功补偿的电压输出谐波大、基波损耗高、占地面积较大,因此,用STATCOM进行无功补偿成为电力系统无功补偿的主要方法。静止同步补偿器(StaticSynchronousCompensator,STATCOM)是柔性交流输电系统的核心装置和技术之一。1976年,美国人L.Gyugyi第一次提出了它的概念,即利用半导体变流器进行无功补偿的理论。通过对系统无功功率实现动态无功补偿,提高系统暂态电压稳定性,确保系统运行安全,改善系统的稳态性能和动态性能。与传统的无功补偿装置相比,STATCOM装置能够连续调节无功,输出谐波小,器件损耗低,运行范围宽,调节速度快,可靠性高等优点;其输出电流在电网电压低时不受影响,具有较硬的低压无功功率特性;而且接入系统后不会改变系统阻抗特性引起振荡。近年来,世界上有很多学者都从事STATCOM装置的研究工作,无论是装置容量还是产品性能都有了很大的提高。新型电力电子器件(如:IGBT、GTO、IGCT等)、多重化、多电平和单相桥串联等技术被应用到STATCOM装置中,以提高装置容量和电压等级,并通过现代控制技术,提高系统电压稳定性,改善装置输出谐波。许多先进的控制方法,例如递归神经网络自适应控制、模糊控制、比例积分(PI)控制、微分代数控制、鲁棒性自适应控制等被应用到STATCOM装置非线性特性的研究中。在世界上针对STATCOM装置的研究工作中,STATCOM装置的仿真建模及其控制方法研究始终是重点。世界各国对STATCOM的研究,STATCOM技术和应用情况都取得了突破性的进展。现代电力电子技术、多重化、多电平和单相桥串联等技术使STATCOM工作性能得到很大的提高。再加上先进控制方法的加入更提高了STATCOM工作的稳定性,使之在电力系统领域的应用更加广泛。关于STATCOM的研究有很多问题,但是最重要的还是它的建模和控制问题,这将直接影响着STATCOM的整体性能。国际上关于STATCOM的研究由来已久,日本是最先运用STATCOM装置的国家,紧接着美国也在STATCOM的研究上取得成功,并和日本联合研制了世界上第一台采用GTO进行逆变的STATCOM,在1991年投入运行取得很好的效果。之后的德国在1997年也研制出大型的STATCOM装置并在丹麦的风电场投入运行。我国虽然起步晚,但是发展速度极快,清华大学在1999年研制出20Mvar的STATCOM装置,紧接着在20xx年我国南方电网研究出世界上最大容量的STATCOM装置,并在东莞投入运行取得良好的效果。从此我国成为能够研制出大容量STATCOM装置的国家之一,但是仍有许多不足之处有待改进。

  三、结语

  在本文里,分析了先进电力电子对整个电网的影响,它在电网建设中的重要性,然后介绍了电网的发展和电能质量的提高对电力电子器件的要求,最后着重对STATCOM和SVC的发展进行分析和比较,它们对电网的无功补偿有效的提高了电网的电能质量。

电力电子技术6

  一、电力电子技术的应用

  1.1一般工业

  工业生产中,一般都会使用到各种交流电动机,这些动力设备性能比较好,在,可以提供直流斩波电源,或者提供可控整流电源。但是提供的主体是电力电子装备。众所周知,交流电机变频调速技术是整个电气节能最关键之技术,相对于传统的大型机器而言,使用的是电力电子交流节能技术,将其作为电力驱动电源,可以节能电能达到30%。近年来,随着电力电子技术得以发展,使得交流电性能得以发挥出来,随着社会不断发展,交流调速技术得到广泛应用,逐渐占据市场。

  1.2在电力系统中的应用

  当电力系统离开了电力电子技术之后,电力现代化建设将很难实现。电力系统建设发展中,得到了电力电子技术支撑,现代化建设目的得以实现。高压输电是基于发电厂借助变压器,将发电机发出的电压将其升压之后再输出的一种全新方式。高压直流输电端位置以及受电端位置,一般都是使用晶闸管变流装置,这可以避免了大容量以及长距离输送导致电力系统出现损耗问题出现,为输电系统使用奠定技术基础,从而为良好输电提供保障。在配电网系统中,电力电子装置还可以被使用于电能质量控制,例如,使用于闪变、瞬间停电以及电压跌落等等电能质量控制中,更好的保障供电质量。

  1.3交通运输

  电子电力技术交通中被广泛使用,DC/DC变换技术被大量使用于地铁、动车以及无轨电车中。在使用中,可以更好的控制无极变速,提升控制质量。在使用中,最常表现在于电气机车中的直流机车选择了整流装置将其作为供电设备。但是,交流机车如果采用了变频装置进行供电,那么需要借助电力电子装置做好电力驱动和和电力控制。例如:直流斩波器被广泛使用于轨道车辆中,常见的磁悬浮列车中电力电子技术使用,这是一项技术要求较好,关键之技术使用案例。其中借助电动汽车将其作为蓄电池,提供能源,需要做好电力驱动控制工作。那么使用蓄电池进行充电,不能离开电源。因此,航海、航空也离不开电子技术。

  二、电力电子技术未来的发展

  观看技术发展进程中看出,半导体器件使用推动了电子技术得以快速发展。当前晶闸管等电力半导体器件有着重要的角色,尤其是在电力电子技术使用过程中。进入的到79年代之后,半控型晶闸管使用开始有新的改变。之前从低压的小电流逐渐向高压大电流方向发展,而且还研究出大量的电子产品。这些产品被成为电子器件,随着电子技术不断发展,这些产品被广泛使用。因此,被称为第一代电力电子器件,随着电力电子技术不断发展,该技术使用范围不断扩大,将其使用于电子技术理论研究和半导体制造使用,使得工艺水平逐渐提高。我国随后研究出了GTR、GTO、功率MOSFE等等电子器件,这些器件都是全控制型的电子器件,被成为第二代电力电子器件。近年来,随着技术水平不断发展,研究出了绝缘栅双极晶体管(IGBT)为代表的第三代电力电子器件,逐渐向响应快、高频率方向发展,这是一个质的飞跃,在我国国民经济发展中具有重要作用,它推动了我国经济不断发展,使得我国电子自动化进程迈进一部。进入90年代之后,电子电力器件发展更快速,逐渐朝复杂化、模块化、智能化、功率集成的方向发展,以此形成了电力电子技术的理论研究、器件开发研制、应用的高新技术领域等,在国际上形成了新的技术热门。目前世界上许多大公司已开发出IPM智能化功率模块,日本三菱、东芝及美国的国际整流器公司已有成熟的产品推出。我国国产的电力半导体器件研究水平相对于西方国家,我国的`电力电子技术水平相对较低,我国应该不断创新技术,不断进行研究,提升科研水平,更好的保障经济建设。我国电力半导体器件如果没有跟上社会发展步伐,将会影响我国经济发展水平。因此,我国的电力半导体产业发展任务艰巨。在未来发展中,应该进一步研究使用新材料,提升器件功率以及温度范围,之间降低器件价格,使得器件被使用的范围更广。系统实现集成化,当获得更好的集成化之后,才更好保障系统可靠性和安全性。

  三、结束语

  综上所述,电力电子技术是一门信息、智力、知识密集型的技术,对该技术掌握对提升我国经济可持续发展有重要作用。从当前的发展前景上看,将半导体器件作为核心技术的电力电子行业,在我国政策支撑下,科研工作深度加深,相信在不久的将来,该技术发展水平会得以提升,更加推动我国经济发展。

  作者:苏潮 单位:广东明阳龙源电力电子有限公司

电力电子技术7

  本文介绍了MATLAB在电力电子技术教学中的应用,并给出了三相电压型SPWM逆变电路仿真实例。引入MATLAB仿真技术作为课堂教学的辅助手段,对电力电子电路进行交互式动态波形分析、谐波分析及电量计算,结果直观、形象,有助于学生理解抽象的理论知识,提高学生学习的兴趣和主动性,改善教学效果,提高教学质量。

  电力电子技术课程主要研究各种电力半导体器件及其组成的各种变流装置的工作原理及应用,主要涉及整流、逆变、直流斩波、交-交变换等电能变换及PWM控制和软开关技术等内容。在该课程的教学中,需要对相关电路进行波形分析及电量计算,不仅需要画出大量的电压、电流信号波形图,而且需要作相关电量的数学公式推导及谐波分析。在传统教学中主要采用PPT动画及课堂板书等教学方式,存在着波形绘制工作量大、所画波形不规范、电路的工作过程及波形的动态变化表现不足、交互性差、理论分析及公式推导繁琐抽象等问题,使得授课课时紧张,课堂教学信息量不够大,授课方式单调枯燥,学生容易产生疲倦感,难于达到理想的教学效果。在课堂教学中引入MATLAB计算机仿真技术作为传统课堂教学手段的补充,有助于克服传统课堂教学的缺点,提高学生的学习兴趣,提高教学质量。本文以三相电压型SPWM逆变电路为例,介绍了MATLAB/SIMULINK在电力电子技术教学中的应用,建立了相应的仿真电路模型并给出了相关的仿真波形。

  一、MATLAB/SIMULINK介绍

  MATLAB是由美国mathworks公司发布的商业数学软件,它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等功能集成在一个视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案。利用其中的SIMULINK软件包提供的图形化交互环境,可快速建立电力电子电路的仿真模型,利用MATLAB提供的各种数学计算及功能分析工具,可方便地对电路进行波形分析及数值计算,并可调用丰富的测量仪器工具对相应电压、电流进行波形观测及数值读取。

  在建立电力电子电路仿真模型时主要用到了SIMULINK软件包中的以下模块库:电力系统模型库(SimPower Systems)中的电源模块库(Electrical Sources)、电器元件模块库(Elements)、电力电子元件模块库(Power Electronics)、测量仪器模块库(Measurements)、其他电器模块库(Extra library)等子模块库,以及Simulink模型库中的仪器仪表库(Sinks)、连接模块库(Connectors)等子模块库。建立电路仿真模型时,不用书写任何代码,只要使用鼠标调出相应的元器件功能模型并将它们连接起来,设置好各元器件的模型参数,即可对电路进行动态仿真。

  二、基于MATLAB的'三相电压型SPWM逆变电路仿真

  三相电压型SPWM逆变电路结构广泛用于通用变频器中,其作用是通过控制开关功率器件的通断将直流电逆变为SPWM交流电。该部分教学内容是电力电子技术课程的重要知识点。在教学中不仅要分析电路的工作原理,而且还涉及电压和电流的波形分析和数值计算。尤其在作输出电压的谐波分析时,需要推导繁杂的公式,教学内容复杂、抽象、枯燥且不易理解。利用MATLAB/SIMULINK建立三相电压型SPWM逆变电路仿真模型,可借助MATLAB强大的波形分析及数值计算功能对SPWM逆变电路进行动态分析,作为传统课堂教学的辅助手段,提高教学效率和教学质量。

  (一)建立仿真模型

  打开MATLAB/SIMULINK仿真平台,从电力系统SimPower Systems模型库中选取直流电源模块、多功能桥(Universal Bridge)模块、PWM脉冲发生器(PWM Generator)模块及三相RLC串联负载模块,将以上电路元器件模块按三相电压型SPWM逆变的原理连接起来组成仿真电路。从测量仪器(Measurements)模块库中调用多路测量仪(Multimeter),配合仪器仪表(Sinks)库中的Scope示波器,可同时观察多个节点及支路的电压电流波形。从其他电气模块库(Extra Library)中调用傅里叶分析(Fourier)模块以便对输出电压信号ua进行谐波分析,调用有效值测量(RMS)模块对输出电压ua进行有效值计算,并用数字显示器Display将分析计算结果显示出来。最终建立的三相电压型SPWM逆变电路仿真模型示于图1中。

  (二)设置模块参数

  双击仿真电路中的相应模块,对逆变电路元器件进行参数设置。

  1.直流电压源Us:电压为100V,测量项Measurements选择Voltage,以便电压数据可通过多路测量仪Multimeter观察。

  2.逆变桥(Universal Bridge)模块:桥臂数选3,吸收电阻Rs=1e5(Ohms),吸收电容Cs=inf(F),功率器件选择:IGBT/Diodes,导通电阻Ron=1e-3(Ohms)。

  3.三相RLC串联负载模块:电阻R=1(Ohms),电感L=0.001(H),测量项Measurements选择Branch voltages and currents,以便数据可通过多路测量仪Multimeter观察。

  4.PWM脉冲发生器(PWM Generator)模块:采用内部产生正弦调制波方式,发生器模式选择6 pulses,载波频率为3000Hz,调制度为0.7,输出电压频率为50Hz,输出电压相角为0o。

  5.傅里叶分析(Fourier)模块:基波频率设置为50Hz,利用Fourier模块分析基波的幅值magnitude-1及基波的相位angle-1。利用Fourier1模块分析3次谐波的幅值magnitude-3及相位angle-3。分析结果用数字显示器显示。

  6.有效值测量(RMS)模块:基波频率设置为50Hz,分析结果用数字显示器显示。

  三、电路仿真及结果分析

  第一,选择菜单simulation/parameters对仿真参数进行设置:仿真开始时间设为0,终止时间设为0.045,选用变步长ode23t算法,计算精度为0.001。

  第二,选择菜单simulation/start开始仿真。通过示波器Scope可观察到三相输出SPWM电压ua、ub、uc波形及三相输出电流ia、ib、ic的波形。仿真结果示于图2中。

  三相输出SPWM电压及三相输出电流波形

  在图2中示出了三相输出SPWM电压ua、ub、uc的波形及三相输出电流ia、ib及ic的波形,仿真结果与理论分析结果基本一致。在程序的运行过程中,学生可观察到仿真波形的动态产生过程,通过观察波形,加深学生对三相对称电压及电流的幅值及其相位关系的理解。利用MATLAB提供的工具,可定向放大局部波形,加强学生对SPWM波的多电平波形的感性认识,三相输出SPWM电压、电流局部放大波形示于图3中。

  三相输出SPWM电压、电流局部放大波形

  利用傅里叶分析(Fourier)模块对SPWM电压ua作基波和3次谐波的幅值及相角计算,结果示于图4,图4中还示出了ua的RMS有效值计算结果,仿真结果与理论计算结果基本一致。改变设置参数,可观察到其他任意次谐波的幅值和相位的计算结果。

  通过该例可以看出,在课堂教学中,利用MATLAB/SIMULINK对电路进行动态交互式分析,分析结果直观、形象,通过改变模块参数可轻易实现对不同电量的分析和波形观察,有助于理解教学中抽象的理论知识,可作为教学的辅助手段,引起学生的学习兴趣,提高课程教学质量。

  四、结论

  本文以三相电压型SPWM逆变电路为例,介绍了将MATLAB/SIMULINK计算机仿真技术应用到电力电子技术教学中,作为课堂教学的辅助手段,对电力电子电路进行交互式动态波形分析、谐波分析及电量计算,分析结果直观、形象,并可通过改变模块参数轻易实现对不同电量的分析和波形观察,有助于学生理解抽象的理论分析,提高学生学习的兴趣和主动性,改善教学效果,提高教学质量。

电力电子技术8

  新能源发电出现至今,电力电子技术的飞速发展让其占据非常有利的位置,成为了一项关键技术。这项关键技术与新能源发电息息相关,直接制约着人们开发利用新的发电技术,并且还关系到新世纪人们与日增长的物质文化需要和社会的向前发展。所以说:在电力系统中,电力电子技术占据着决定性作用,该技术的不断创新和发展非常重要。关于该项技术,我国是世界上起步相对比较早的国家,目前在这个技术上,做的比较完善和专业,尤其是在通信网络方面形成较大的规模。比如说电信网络被我们所熟知的各项业务都是这个技术的应用体现,电力系统的不断发展,使得电力电子技术已经成为必不可少的因素,占据至关重要的位置。

  1该技术应用在电网中的现状

  作为一项新兴的电工技术,电力电子将强弱两种电技术结合在一起成为新技术的一种,不仅在应用上占据一定的份额,并且在国民经济上发挥着自身巨大的作用。除此之外,还会对输电系统的前景造成巨大的影响,使得其出现革命性的变革,推动其不断向前发展。现有的电力电子技术在生活中应用十分广泛,涉及到如下方面:生产电能的过程中会用到它、输配送电能的过程中会用到它、存储电能的时候会用到它、还有其他的领域也需要他。这项技术基本上应用在了电力系统全部的环节中。

  (1)生产电能的过程中会用到它。在这个方面的应用主要是发电系统,通过提高类似于发电机这类发电设备的工作效率来控制和调节设备功率。我们显而易见的就是大型发电机的应用上了,其控制方向是静止励磁控制。

  (2)输配送电能的过程中会用到它。在这个方面的应用换言之就是输电系统。这个过程中,我们会引进一个新的技术称之为交流输电,它是将现代出现的叫做控制技术的一种技术和电力电子技术紧密的结合在一起形成的。这一项柔性交流输电技术通过控制技术,针对电力系统,然后不间断的调节系统的各项指标(包括参数、功率和电压等等)。这样的处理尽可能的减少了输配送电能的过程中将会存在的能源损耗问题,也会提高其过程的稳定性。关于这个输配送电的过程,目前技术上比较关心的是高压直流电的输送。距离的远近也是一个重要因素,我们知道的是关于高压直流,其距离越远的输送越发能处理输送过程产生的诸多问题。在其他方面的参数控制相同的情景之下,高压直流的输电远距离会相对交流有很大幅度的损耗减小。因为如果电流保持稳定不变,那便不会出现电抗压降,这样会减少输电整体的压降。那么我们可以以低成本投入的'线路获得我们意想不到的线路高稳定性,甚至可以保证基本上不会出现由于稳定性不够而产生各种各样的线路问题。

  2相关器件的发展过程的描述

  上个世纪的50年代后期,世界上出现了晶闸管,这是世界上出现的第一只,这个晶闸管的出现意味着电力电子技术发生了来势汹汹让人触不及防的一次大变革,它标志着人们不再在电气传动领域一如既往的坚持过去的运作方式,这样的格局已经进步了,发生了翻天覆地的变化。电能的转换已经发生了革新,已经不会再沿用过去古老的办法,而选择采取最新出现的技术,电力电子技术中的各种器件出现和构成,这一领域将我们带入了变流器的时代。走到这个时期,电力电子技术就算是历经千辛万苦才迎来了春天,但始终没有阻挡它进入这一个新的时代。据此经过40多年的发展之后,我们到了新的世纪,我们口中的电力电子技术已经变得非常的成熟,它的每一个方面都取得了非常惊人的成绩。这40多年的经过,是世界上各个技术人员最为紧张,竞争最为残酷的一段时期。传统的电网模式所采取的信息传递方式为点对点,即信息的交互和传递仅能在有限的局部范围进行,因此较为保守和安全。电力电子技术的兴起掀起了智能化电力系统的诞生。智能化电力系统所具有的性能包括实现信息的共享化,有利于各级对变电站的运行进行相关管理。在纵向发展的角度,由二极管带头的第一代器件最后发展至第二第三代,最终将各个电子元件结合在一起,形成了集成电路,也作为最新出现的第三代电力器件在世界上立足。我们如果想要在生活必不可少的网络上,得到系统最为贴心的服务,便不得不将电力电子技术应用起来,这是一项高科技技术。我们实事求是的说一句:电子系统出现如今的盛事,变得如此的现代化,是离不开电力电子技术的,没有这项技术,我们现在享受的网络系统根本就无法如此现代化。

  3结语

  总而言之,我们人类在不断地向前发展过程中,认知这这个世界,对于世界客观事物的理解也随着这个过程不断的进步和延伸出不同的认识。各个行业的技术都与日俱新,不停的进行着技术革命,不断的向前推动。制造各项技术所需的原材料也不甘示弱,不断展现出新的面貌,研发出更加优质的材料。电力电子器件在所有的技术中,被归类为电力系统的一项优秀技术,它表现出了自身独有的特性,随着社会各个方面的进步和发展,表现出自己的完善机制。世界上不断地涌现出改革创新后的电力电子技术,我们都是有目共睹的。我们可以大胆的猜想,电力电子技术时代会延续很久,这个时代不会一时半会儿被替代,而这项技术会延伸到更多的方面去。有着灿烂的前景。

电力电子技术9

  一、电力电子技术的现状及发展前景

  电力电子技术前沿及发展在电力电子半导体器件、电力电子积木和集成电力电子模块技术、发电和输电技术、电能质量控制、电力电子变换技术以及电力电子仿真软件等方面都有所反映,鉴于篇幅所限,笔者自此只选取其中几方面加以介绍和阐述。

  1.1 发电机输电技术

  依托于电力电子技术,发电效率不断提高,输电及配电更加可靠。

  (1)电力电子技术的应用提升了传统发电方式,例如,借助中频交流励磁机以及电力电子整流,可以在一定程度上提升传统发电方式的可靠性;借助节能技术可以实现对发电领域潜力的充分发掘;此外,在水力发电中,借助电力电子技术可以实现直流励磁向变频励磁的转换,从而试论电力电子技术发展趋势渠莉国网山东济宁市任城区供电公司272000可以实现枯水季节发电周期的延长。

  (2)发电污染大大降低。虽然利用风能、太阳能以及地热等自然能发电所造成的污染少到可以忽略不计,但是发出的电力质量不高,当无法直接连入到电力系统时,电力电子技术则可以对其进行储存和缓冲,并且可以实现对电能质量的极大改善。

  (3)新型高效储能技术及变换技术,借助超导线圈磁场可以实现电力能量储备,这样就可以将利用风能、太阳能以及地热等自然能所发的质量较低的电能以直流方式进行储存,之后再借助变换技术完成电力传输,与抽水储能发电以及蓄能电池相比,这一方式的工作效率更高。

  (4)高压直流输电技术,在远距离电力传输方面,高压直流输电比交流输电更具优势,但是,采取高压直流输电技术必须具备功率极大的整流及逆变装置,并且对可靠性要求极高。因此,今后电力电子技术需要在现有技术之上,将提高输电可靠性作为重点研究项目。热力系统节能的发展潜能非常大,效果也相对明显,在以往的一段时间内,由于电力工程方基本不注意热功系统的节能问题,所以缺少完整的热功系统节能知识以及必要的优化设计分析方案。发电厂热功系统设计方案、系统结构以及连接方式都存在着不合理的现象。由于在运行操作及维护不当的因素存在,所以在电厂电功系统运行过程中,会出现一些相关问题:运行经济性达不到设计水平等问题层出不穷。这些都导致了机组热经济性的降低,所以热功系统节能知识的普及以及实用节能新技术应当尽快的进行全面推广。

  1.2 电能质量控制及完善对策

  所谓电能质量,指的是在供电装置正常运作过程中,不对用户正常用电造成干扰或者中断影响的特性。当前,随着电网变频调速装置、电气化铁路冲击性、非线性以及负荷不平衡性日益加剧,电能质量问题越来越突出;与此同时,工业、商业以及居民用电设备对电能质量的要求也在不断提高。配电系统已经引进了电力电子技术设备,从而向电能质量控制难题的解决提供了技术方面的保障和途径,以固态开关为例,借助固态开关,发生故障的供电线路向正常运作的供电线路的切换可以在一个工频半波内即可实现。近些年来又提出用户电力技术概念,即借助电力电子技术实现供电可靠性的不断提升以及电能质量的严格控制。

  1.3 电力电子变换技术

  电力电子技术中,处于基础性地位同时有十分重要的共性技术就是功率变换技术。当前的电力电子功率变换技术中应用到了软开关技术、矫正功率因数技术以及谐波消除技术等。其中,借助软开关技术可以实现变换器件开关时耗能量的'极大减少,使开关损耗不对开关频率造成影响,进而实现工作频率提高,散热体积降低等效果。比如火力发电热力系统安装包括燃料供应系统、除灰系统、水处理系统、供水系统、电气系统、热工控制系统、暖通系统等,对这些设备调试前先制定合理调试手册,进行调试时先对热功的系统各设备进行调试,若调试过程中发现设备无法正常运行,应查明原因,待问题解决后方可对热功系统整体进行调试,调试过程中必须注意人员安全,系统调试完成后需核对是否满足了设计要求?运行效果是否良好?全力保证热功系统的安全运行,全面提高电厂的经济效益。另外通信设备的转换也很重要,虽然我国电力通信网已实现综合数字网,但实际上只是物理意义上的网,大部分还仅仅停留在点对点的通信方式上。真正意义的通信网络还应包括逻辑网,这样,才能有效发挥通信网络的功能和效益,才能从根本上提高电力通信网的可靠性和各种业务的传输质量。我们应在现有设备资源的基础上,着重研究如何实现网络化,结合同步数字传输体系(SDH)技术的研究,重点研究解决SDH的网络管理技术和网络同步技术等问题。

  二、结语

  随着科技的进步,电力电子技术的应用范围越来越广泛,在诸如供电电源、电力输配电以及照明等方面都有所涉及。电力电子技术具有十分重要的影响和意义,一方面,可以对传统工业起到极大的改进和完善作用。

电力电子技术10

  一、基本概念

  1.电力电子器件:是指可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。

  2.电力电子电路也被称为电力电子系统,由控制电路、驱动电路、检测电路和以电力电子器件为核心的主电路组成。

  3.电力电子器件的分类

  (1)按照电力电子器件能够被控制电路信号所控制的程度,可分为半控型器件、全控型器件和不控型器件。

  (2)按照驱动电路加在电力电子器件控制端和公共端之间的信号性质,又可以将电力电子器件分为电流驱动型和电压驱动型器件。

  (3)电力电子器件还可以按照器件内部电子和空穴两种载流子参与导电的情况分为单极型器件、双极型器件和复合型器件。

  4.电导调制效应:当PN结上流过的正向电流较小时,二极管的电阻主要是作为基片的低掺杂N区的欧姆电阻,其阻值较高且为常量,因而管压降随正向电流的上升而增加;当PN结上流过的正向电流较大时,注入并积累在低掺杂N区的少子空穴浓度将很大,为了维持半导体电中性条件,其多子浓度也相应大幅度增加,使其电阻率明显下降,也就是电导率大大增加,这就是电导调制效应。

  5.方向击穿:PN结具有一定的反向耐压能力,但当施加的反向电压过大,反向电流将会急剧增大,破坏PN结反向偏置为截止的工作状态,这就叫反向击穿。

  6.热击穿:当反向未被限制住,使得反向电流和反向电压的乘积超过了PN结容许的耗散功率,就会因热量散发不出去而导致PN结温度上升,直至过热而烧毁,就是热击穿。

  7.电力二极管的主要参数

  正向平均电流IF(AV):指电力二极管长期运行时,在指定的管壳温度和散热条件下,其允许流过的最大工频正弦半波电流的平均值。

  通过对正弦半波电流的换算可知,正向平均电流IF(AV)对应的有效值为1.57IF(AV)。

  8.电力二极管的主要类型:普通二极管(又称整流二极管)、快速恢复二极管(FRD)和肖特基二极管(SRD)。

  9.晶闸管:是晶体闸流管的'简称,又可称为可控硅整流管(SCR)。10.晶闸管的基本特性:

  (1)当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。(2)当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能导通。

  (3)晶闸管一旦导通,门极就失去控制作用,不能门极触发电流是否存在,晶闸管都保持导通。

  (4)若要使已导通的晶闸管关断,只能利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下。

  11.晶闸管的派生器件:快速晶闸管(FST)、双向晶闸管(TRIAC)、逆导晶闸管(RCT)和光控晶闸管(LTT)。

  12.门极可关断晶闸管(GTO):它是晶闸管的一种派生器件,但可以通过门极施加负的脉冲电流使其关断,属于全控型器件。GTO是一种多元的功率集成器件,虽然外部同样引出三个极,但内部则包含数十个甚至数百个共阳极的小GTO元,这些GTO元的阴极和门极则在器件内部并联在一起。

  13.GTO与普通晶闸管不同点:

  (1)在设计器件时使得2较大,这样晶体管V2控制灵敏,使得GTO易于关断。

  (2)使得导通时的12更接近于1。这样使得GTO导通时饱和程度不深,更接近于临界饱和,从而为门极控制关断提供了有利条件。

  (3)多元集成结构使每个GTO元阴极面积很小,门极和阴极间的距离大为缩短,使得P2基区所谓的横向电阻很小,从而使从门极抽出较大的电流成为可能。

  14.电力晶体管(GTR):译为巨型晶体管,是一种耐高压、大电流的双极结型晶体管(BJT)。它由三层半导体(分别引出集电极、基极和发射极)形成的两个PN结(集电结和发射结)构成,多采用NPN结构。

  15.GTR的二次击穿现象:当GTR的集电极电压升高至击穿电压时,集电极电流迅速增大,这种首先出现的击穿是雪崩击穿,被称为一次击穿。出现一次击穿后,只要Ic不超过最大允许耗散功率相对应的限度,GTR一般不会损坏,工作特性也不会有什么变化。但实际应用中常常发现一次击穿发生时如不有效地限制电流,Ic增大到某个临界点时会突然急剧上升,同时伴随着电压的陡然下降,这种现象称为二次击穿。二次击穿常常立即导致器件的永久损坏,或者工作特性明显衰变,因而对GTR危害极大。

  16.电力场效应晶体管:也分为结型和绝缘栅型,但通常主要指绝缘栅型中的MOSFET,简称电力MOSFET。电力MOSFET在导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。

  17.MOSFET分类:

  (1)按导电沟道可分为P沟道和N沟道。

  (2)对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道的称为增强型;当栅极电压为零时漏源极之间就存在导电沟道的称为耗尽型。在电力MOSFET中,主要是N沟道增强型。18.电力MOSFET的工作原理

  (1)当漏极接电源正端,源极接电源负端,栅极和源极间电压为零时,P基区与N漂移区之间形成的PN结J1反偏,漏源极之间无电流流过。

  (2)如果在栅极和源极之间加一正电压UGS,由于栅极是绝缘的,所以并不会有栅极电流流过。但栅极的正电压却会将其下面P区中的空穴推开,而将P区中的少子电子吸引到栅极下面的P区表面。

  (3)当UGS大于某一电压值UT时,栅极下P区表面的电子浓度将超过空穴浓度,从而使P型半导体反型而成N型半导体,形成反型层,该反型层形成N沟道而使PN结J1消失,漏极和源极导电。

  19.绝缘栅双极晶体管(IGBT):综合了GTR和MOSFET的优点。

  (GTR和GTO是双极型电流驱动器件,由于具有电导调制效应,所以其通流能力很强,但开关速度较低,所需驱动功率大,驱动电路复杂。而电力MOSFET是单极型电压驱动器件,开关速度快,输入阻抗高,热稳定性好,所需驱动功率小而且驱动电路简单。)

  20.IGBT开通和关断由栅极和发射极间的电压uGE决定。

  (1)当uGE为正且大于开启电压UGE(th)时,MOSFET内形成沟道,并为晶体管提供基极电流进而是IGBT导通。

  (2)当栅极与发射极间施加反向电压或不加信号,MOSFET内的沟道消失,晶体管的基极电流被切断,使IGBT关断。

  21.IGBT的擎住效应:IGBT内部结构中,由于NPN晶体管的基极与发射极之间存在体区短路电阻,P形体区的横向空穴电流会在该电阻上产生压降,相当于对J3结施加一个正向偏压,在额定集电极电流范围内,这个偏压很小,不足以使J3开通,然而一旦J3开通,栅极就会失去对集电极电流的控制作用,导致集电极电流增大,造成器件功率过高而损坏。这种电流失控的现象,被称为擎住效应或自锁效应。

  22.功率模块:将多个相同的电力电子器件或多个相互配合使用的不同电力电子器件封装在一个模块中,可以缩小装置体积,降低成本,提高可靠性。

  23.功率集成电路:如果将电力电子器件与逻辑、控制、保护、传感、检测、自诊断等信息电子电路制作在同一芯片上,则称为功率集成电路。

  24.驱动电路的基本任务:将信息电子电路传来的信号按照其控制目标的要求,转换为加在电力电子器件控制端和公共端之间,可以使其开通或关断的信号。

  25.晶闸管触发电路应满足以下要求:

  (1)触发脉冲的宽度应保证晶闸管可靠导通。

  (2)触发脉冲应有足够的幅值。

  (3)所提供的触发脉冲应不超过晶闸管门极的电压、电流和功率定额。(4)应有良好的抗干扰性能、温度稳定性及与主电路的电气隔离。

  26.GTO的开通控制与普通晶闸管相似,但对触发脉冲前沿的幅值和陡度要求高,且一般需要在整个导通期间施加正门极电流。使GTO关断需要施加负门极电流,对其幅值和陡度的要求更高。关断后还应在门极施加约5V的负偏压,以提高抗干扰能力。

  27.使GTR开通的基极驱动电流应使其处于准饱和导通状态,使之不进入放大区和深饱和区。关断GTR时,施加一定的负基极电流有利于减小关断时间和关断损耗,关断后同样应在基射极之间施加一定幅值(6V左右)的负偏压。

  28.电力电子装置中可能发生的过电压分为外因过电压和内因过电压两类。

  29.过流保护较常用的措施:采用快速熔断器、直流快速断路器和过电流继电器。

  30.缓冲电路:又称为吸收电路。其作用是抑制电力电子器件的内因过电压、du和di,减小器件的开关损耗。

  dt或过电流dt

  31.按照器件内部电子和空穴两种载流子参与导电的情况,将器件分为:(1)属于单极型电力电子器件的有MOSFET和SIT等。

  (2)属于双极型电力电子器件的有电力二极管、晶闸管、GTO、GTR和SITH等。(3)属于复合型电力电子器件的有IGBT和MCT。

  二、作业详解:

  1.使晶闸管导通的条件是什么?

  答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。或:uAK0且uGK0。

  2.维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断?答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。

  要使晶闸管由导通变为关断,可利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。

  7.IGBT、GTR、GTO和电力MOSFET的驱动电路各有什么特点?

  答:IGBT驱动电路的特点是:驱动电路具有较小的输出电阻,IGBT是电压驱动型器件,IGBT的驱动多采用专用的混合集成驱动器。

  GTR驱动电路的特点是:驱动电路提供的驱动电流有足够陡的前沿,并有一定的过冲,这样可加速开通过程,减小开通损耗,关断时,驱动电路能提供幅值足够大的反向基极驱动电流,并加反偏截止电压,以加速关断速度。

  GTO驱动电路的特点是:GTO要求其驱动电路提供的驱动电流的前沿应有足够的幅值和陡度,且一般需要在整个导通期间施加正门极电流,关断需施加负门极电流,幅值和陡度要求更高,其驱动电路通常包括开通驱动电路,关断驱动电路和门极反偏电路三部分。

  电力MOSFET驱动电路的特点:要求驱动电路具有较小的输入电阻,驱动功率小且电路简单。

  8.全控型器件的缓冲电路的主要作用是什么?试分析RCD缓冲电路中各元件的作用。

  答:全控型器件缓冲电路的主要作用是抑制器件的内因过电压,du减小器件的开关损耗。

  RCD缓冲电路中,各元件的作用是:开通时,Cs经Rs放电,Rs起到限制放电电流的作用;关断时,负载电流经VDs从Cs分流,使dudtdt或过电流和didt,减小,抑制过电压。

  9.试说明IGBT、GTR、GTO和电力MOSFET各自的优缺点。答:对IGBT、GTR、GTO和电力MOSFET的优缺点的比较如下:

  器件优点电压、电流容量大,适用于大功率场GTO合,具有电导调制效应,其通流能力很强耐压高,电流大,开关特性好,通流能力强,饱和压降低开关速度快,输入阻抗高,热稳定性电力MOSFET好,所需驱动功率小且驱动电路简单,工作频率高,不存在二次击穿问题开关速度高,开关损耗小,具有耐脉冲电流冲击的能力,通态压降较低,输入阻抗高,为电压驱动,驱动功率小

  缺点电流关断增益很小,关断时门极负脉冲电流大,开关速度低,驱动功率大,驱动电路复杂,开关频率低开关速度低,为电流驱动,所需驱动功率大,驱动电路复杂,存在二次击穿问题电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置GTRIGBT开关速度低于电力MOSFET,电压,电流容量不及GTO

电力电子技术11

  一、选择题(每题20分)

  1.()晶闸管额定电压一般取正常工作时晶闸管所承受峰电压的(B)。

  A.1~2倍

  B.2~3倍

  C.3~4倍

  D.4~5倍

  2.()选用晶闸管的额定电流时,根据实际最大电流计算后至少还要乘以(A)。

  A.1.5~2倍

  B.2~2.5倍

  C.2.5~3倍

  D.3~3.5倍

  3.()晶闸管刚从断态转入通态并移除触发信号后,能维持通态所需要的最小电流是(B)。

  A.维持电流IH

  B.擎住电流IL

  C.浪涌电流ITSM

  D.最小工作电流IMIN

  4.()对同一只晶闸管,擎住电流IL约为维持电流IH的(B)。

  A.1~2倍

  B.2~4倍

  C.3~5倍

  D.6~8倍

  5.()普通晶闸管的额定电流用通态平均电流值标定,而双向晶闸管通常用在交流电路中,因此其额定电流用(D)标定。

  A.平均值

  B.最大值

  C.最小值

  D.有效值

  6.(C)晶闸管属于

  A.全控型器件

  B.场效应器件

  C.半控型器件

  D.不可控器件

  7.()晶闸管可通过门极(C)。

  A.既可控制开通,又可控制关断

  B.不能控制开通,只能控制关断

  C.只能控制开通,不能控制关断

  D.开通和关断都不能控制

  8.()使导通的晶闸管关断只能是(C)。

  A.外加反向电压

  B.撤除触发电流

  C.使流过晶闸管的电流降到接近于零

  D.在门极加反向触发

  9.()在螺栓式晶闸管上有螺栓的一端是(A)。

  A.阴极K

  B.阳极A

  C.门极K

  D.发射极E

  10.()晶闸管导通的条件是(A)。

  A.阳极加正向电压,门极有正向脉冲

  B.阳极加正向电压,门极有负向脉冲

  C.阳极加反向电压,门极有正向脉冲

  D.阳极加反向电压,门极有负向脉冲

  11.()可关断晶闸管(GTO)是一种(A)结构的半导体器件。

  A.四层三端

  B.五层三端

  C.三层二端

  D.三层三端

  12.()晶闸管的三个引出电极分别是(A)。

  A.阳极、阴极、门极

  B.阳极、阴极、栅极

  C.栅极、漏极、源极

  D.发射极、基极、集电极

  13.()已经导通了的晶闸管可被关断的条件是流过晶闸管的.电流(A)。

  A.减小至维持电流IH以下

  B.减小至擎住电流IL以下

  C.减小至门极触发电流IG以下

  D.减小至5A以下

  14.()单相半波可控整流电路,阻性负载,控制角α的最大移相范围是(B)。

  A.0~90°

  B.0~120°

  C.0~150°

  D.0~180°

  15.()单相半波可控整流电路,阻性负载,当α=(D)时,Ud=0。

  A.90°

  B.120°

  C.150°

  D.180°

  16.()单相半波可控整流电路,阻性负载,当α=(D)时,Ud=0.45U2。

  A.0°

  B.90°

  C.150°

  D.180°

  17.()单相半波可控整流电路,阻性负载,晶闸管承受的最大正反向电压均为(C)。

  A.U2

  B.U2

  C.U2

  D.2U2

  18.()单相半波可控整流电路,带电阻性负载R,设变压器二次侧相电压有效值为U2,则直流输出电流平均值为(C)。

  A.0.45

  B.0.225(1+COSa)

  C.0.9(1+COSa)

  D、0.45

  19.()单相半波可控整流电路,带电阻性负载,设变压器二次侧相电压有效值为U2,则直流输出电压平均值为(B)。

  A.0.45U2

  B.0.9U2(1+COSa)

  C.0.9U2

  D.0.45U2

  20.()单相半波可控整流电路,阻感性负载时,在负载两端并联续流二极管的作用是(B)。

  A.使α的移相范围加大。

  B.使Ud不再出现负的部分。

  C.保护可控硅不被击穿。

  D.减小可控硅承受的最大反向电压。

电力电子技术12

  一、调整教学内容使其适合学生的学习

  1.掌握相关课程之间的联系。教师应该熟悉掌握本课程与相关课程的联系,例如了解先修课“电路”、“模拟电子技术”和“数字电子技术”三门课程的教学情况和后续课“电力拖动自动控制系统”的安排,处理好它们之间的关系,使整个专业课程体系前后衔接,避免内容的重复和疏漏。例如讲“半导体电力开关器件”一章时,模拟电子技术中已讲过小功率晶体管结构、原理、特性及应用。在本门课程中,对晶体管应重点讲述其与小功率晶体管的不同之处。模拟电子技术中讲述的晶体管其工作特性在线性放大区,而在电力电子技术中,晶体管工作在截止区和饱和区之间,使用的是其开关特性。对于晶闸管相控有源逆变的应用部分,重点讲解在整流、有源逆变两种状态下,直流电机四象限传动系统的特性,也就是直流电机的转矩正比于电枢电流,转速正比于电枢电压,改变电枢电压、电流的方向,就可以使直流电机四象限运行,为后续课程《电力拖动自动控制系统》中的直流调速部分做好铺垫工作。

  2.导论是说明编者写作意图、本书内容的主要特点、背景及主要内容的知识体系和概要等,同时还向学习者指明了学习本教材的学习方法,因此,教材的导论部分对学习者的入门学习起到了提纲挈领的重要作用。我们在每学年的第一节导论课时,通常要给学生做一个专题讲座,以图文并茂的形式详细介绍电力电子技术领域最新的发展动态、国内外的发展现状以及在相关领域的应用等,开阔学生的视野,使其对本课程有个大概的了解,引导学生充分认识到本课程在现实生活中及在本专业中的重要性。

  3.电力电子器件是电力电子技术的基础,四类基本变流电路(AC/DC、DC/DC、AC/AC、DC/AC)是电力电子技术的研究核心。教学内容大致分为三部分:

  (1)电力电子器件。主要包括电力二极管、晶体三极管、晶闸管、MOS-FET、IGBT等器件的基本结构、工作原理、主要参数、应用特性等问题。

  (2)四种基本的电力电子电路。对于直流斩波电路,主要电路为BUCK、BOOST、CUK斩波电路等。重点讲解BUCK、BOOST斩波电路的原理,输出电压电流波形的画法,改变占空比的方式:脉冲宽度调制PWM,脉冲频率调制PFM。逆变电路是主要依赖于全控型开关器件,重点讲解正弦波脉冲宽度调制SPWM基本原理,单极性、双极性倍频正弦波脉冲宽度调制逆变器的原理及其控制方式。以半控型器件晶闸管为主的整流电路部分,主要包括晶闸管驱动和保护、整流电路及有源逆变电路。交流电路的器件为双向晶闸管,电路为单相交流调压电路、单相调功电路、三相调压电路及触发电路等内容的讲解。

  二、注重教师自身建设,提高综合素质

  1.在讲授《电力电子技术》这门课程内容的时候,教师不能只讲课程教学大纲或教科书的内容,还要广泛涉猎其他有关的教材和参考书,形成自己的独到见解。因此,任课教师对电力电子技术的现状和发展趋势,理论如何与实际相联系,必须要有所了解。例如在讲授直流斩波电路时,可以引出该电路可以使用在开关电源、太阳能发电系统中;在讲解整流变换时,介绍其在电力机车的启动、调速与制动中的应用,有源逆变电路可应用到变频空调、电梯、计算机不间断电源;逆变变换可联系太阳能发电、风力发电;在讲授交流电路时,说明其在可调光台灯、异步电动机软启动装置中的应用。通过以上讲解就可以使学生了解所学的书本知识在实际生活中的应用,激发学生的学习兴趣。

  2.教师要定期地阅读最新的与电力电子技术有关的学术期刊,及时浏览相关的专业技术网站,掌握本学科前沿发展的动向,熟悉本学科和相邻学科的新成果、新进展。

  3.教师还要承担一些与电力电子技术相关的科研工作,将科研与教学有机地结合起来,把科研成果转化成教学资源,将科研成果和科研体会引进课堂教学,丰富教学内容,促进专业教学水平的提高。

  三、激发学生学习兴趣,增强课堂效果

  1.充分发挥学生的主体作用。教师要学会调动学生学习的主动性和积极性,才能培养出高质量的人才。教师对内容相似或易于理解的内容予以精简,选择一部分内容留给学生去自学,然后让学生站在老师的角度去给别的同学讲解所理解的内容,让学生画出主电路波形图,通过相互交流,互相促进,提高学生的学习兴趣。

  2.平等待人,积极鼓励。在近几年教学过程中,发现学生中有消极待学的现象,这部分学生或沉迷于游戏,或忙于出外打工赚钱,严重地影响了其学业,考试成绩也不理想。对于这部分学生,教师一定要找到症结所在,积极引导、平等对待、不断勉励。要重视学生的个性培养,积极鼓励学生求新、求异、求难、质疑、进取的精神,对于部分考研的学生,他们认为凡是和考研有关的课程就认真对待,无关的就不学,对于这样的学生,我们的做法是将考研数学的傅里叶变换与电力电子技术中的基波和谐波的概念结合起来,既加强了考研知识学习,又解决了电力电子技术中的知识难点掌握问题,使其认识到课程之间都是相关的,只有这样才能使师生之间建立一种平等、和谐、融洽的关系,激发学生在课堂上的思维能力。

  四、运用多种教学手段,提高教学效果

  1.从以上对课程特点的分析可以看出,只采用黑板板书的方法对课程进行讲授的话,教师势必会在概念、电路图、波形图及参数变化对波形图的'影响方面的书写花费大量的时间。而若只采用多媒体进行教学的话,在波形和物理计算公式的推导的讲解过程中,讲解速度虽然会加快,但是与学生的互动也会相应减少。这样势必不利于启发学生,培养学生的独立思考能力。教师在讲授的过程中应根据教学内容确定使用哪种方法进行讲解。文字内容比较多的情况,可采用多媒体辅助教学。利用PPT向学生展示学习内容中涉及到的实物照片,这样不仅可以增加教学内容的知识量,而且可以提高学生的学习兴趣。如果讲解的是可控电路的工作原理和输出波形,可采用多媒体(电路图演示)和板书教学(波形图绘制)相结合的方法。

  2.实验是培养理论联系实际、学生动手能力的重要手段。对电力电子技术实验,保留原有的晶闸管整流验证性实验,使学生对本课程的应用有初步认识,对直流斩波电路以及正弦波同步移相触发电路实验,则可当成设计型实验,由教师给出电路图及参数,由学生自行设计,选择器件及其驱动电路、保护电路,进而完成实验,培养学生分析问题、解决问题的能力。

  3.课程设计作为实践课教学中的重要组成部分,在人才培养中起着举足轻重的作用。因此切实提高课程设计的质量,具有重要意义。《电力电子技术》课程设计教学模式分以下几个方面:

  (1)课程设计走进实验室。建立开放式综合性实验,将实验时间交给学生,让他们自行安排。而日常生产和生活中,有许多实用的电力电子产品,其电路相对简捷,很接近教材,非常具有代表性,例如手机的充电器、录音机用的变压器,可以把它引入到课程设计中来。通过这样的过程,学生能够更真切地理解电力电子技术的基本内容、基本原理,更加真实地感受电力电子电路的设计、调试过程。

  (2)课程设计引入计算机辅助设计。传统的电力电子技术实验,基本上是学生利用protel软件画出PCB板图,再利用电力电子开关器件、电阻、电容等元件搭建电路来获得电子线路的感性知识。但在教学实践中,由于电路板连线可靠性差,学生的操作技术不够熟练,产生错误的概率较高。为了解决上述问题,我们引入了计算机仿真软件MATLAB,Simulink作为MATLAB软件下的仿真系统,通过它下面的工具箱可以对电力电子技术进行建模、仿真分析,实现高效率开发系统的目标。

  五、结语

  本文针对近几年的《电力电子技术》课程理论教学和实践教学理念和改革思想进行了探讨,有针对性地创新教学方法的研究,使课程内容体现学科发展动态、学科前沿内容并提出有待解决的问题,实行开放式教学,对教学内容删繁就简,吐故纳新,实行教学内容对学科与专业发展的跟踪,并且将课程教育与素质教育相结合,将素质教育融入专业教育之中,有效地调动了学生的学习兴趣和学习主动性,提高了教学效果。

电力电子技术13

  本学期实时测量技术实验以电子设计大赛的形式,老师命题,学生可以选择老师的题目也可以自己命题,并且组队操作其他的事情(包括设计总体方案、硬件电路、软件设计、焊接、调试等工作)。趣味性强,同时也可以学到很多东西。

  我们认为,在这学期的实验中,在收获知识的同时,还收获了阅历,收获了成熟,在此过程中,我们通过查找大量资料,请教老师,以及不懈的努力,不仅培养了独 立思考、动手操作的能力,在各种其它能力上也都有了提高。更重要的是,在实验课上,我们学会了很多学习的方法。而这是日后最实用的,真的是受益匪浅。要面 对社会的挑战,只有不断的学习、实践,再学习、再实践。

  之所以使用avr单片机作为我们的执行核心,不仅是因为老师说avr现在是社会上应用比较多的单片机,也因为想通过使用avr锻炼自己的c 语言编程能力,养成良好的c语言编程风格。不管怎样,这些都是一种锻炼,一种知识的积累,能力的.提高。完全可以把这个当作基础东西,只有掌握了这些最基础 的,才可以更进一步,取得更好的成绩。很少有人会一步登天吧。永不言弃才是最重要的。

  而且,这对于我们的将来也有很大的帮助。以后,不管有多苦,我想我们都能变苦为乐,找寻有趣的事情,发现其中珍贵的事情。就像中国提倡的艰苦奋斗一样,我们都可以在实验结束之后变的更加成熟,会面对需要面对的事情。

  与队友的合作更是一件快乐的事情,只有彼此都付出,彼此都努力维护才能将作品做的更加完美。而团队合作也是当今社会最提倡的。曾经听过,mba之所以最近不受欢迎就是因为欠缺团队合作的精神和技巧。

  电压电流测量装置虽然结束了,也留下了很多遗憾,因为由于时间的紧缺和许多课业的繁忙,并没有做到最好,但是,最起码我们没有放弃,它是我们的骄傲!

  相信 以后我们会以更加积极地态度对待我们的学习、对待我们的生活。我们的激情永远不会结束,相反,我们会更加努力,努力的去弥补自己的缺点,发展自己的优点, 去充实自己,只有在了解了自己的长短之后,我们会更加珍惜拥有的,更加努力的去完善它,增进它。只有不断的测试自己,挑战自己,才能拥有更多的成功和快 乐!

  to us, happiness equals success! 快乐至上,享受过程,而不是结果!

  认真对待每一个实验,珍惜每一分一秒,学到最多的知识和方法,锻炼自己的能力,这个是我们在实时测量技术试验上学到的最 重要的东西,也是以后都将受益匪浅的!

电力电子技术14

  【摘要】随着电力行业不断发展,对于大功率电力电子技术可靠供电系统进行研究,是电力行业发展中的重要内容。电网的运行规模越来越大,电力用户的需求逐年增加,提升电力系统的可靠性是电力企业所面临的重要任务。在科技发展背景下,大量的电力电子装置被应用到电力系统中,为电力系统可靠性提升带来诸多帮助。基于此,本文就大功率的电力电子技术进行分析,研究该技术下的可靠供电系统。

  【关键词】大功率;电力电子技术;可靠供电系统;研究

  1前言

  大功率电力电子技术在电力系统中发挥着重要的作用,主要涉及到了电力系统的发电、输电、配电以及用电等方面。实现大功率电力电子技术供电可靠性,在本文中从两方面进行分析,第一,提升大功率电力电子技术的供电可靠性,可以通过提高工业敏感负荷的供电可靠性来实现;第二,将大功率的电子技术应用于发电机励磁系统中,以提升发电机的阻尼转矩,来实现系统的动态可靠性提升。

  2大功率电力系统可靠性供电概述

  从敏感负荷角度对电力系统供电可靠性进行分析。实现供电的可靠性不仅要求电力系统中不能长时间断电,还需要对电力供电系统的动态电压质量提出更高的要求。对系统中的电压跌落以及电压短时中断的时间进行限定,在实际供电中,不同的电压跌落中,其敏感负荷所能够承受的电压跌落时间存在着差异性。在一般规律下,跌落幅度越大,其敏感负荷所能够才承受的时间越短。传统的供电可靠性统计统计,只能以停电时间超过1分钟或者5分钟实际依据。在我国,对于自动重合闸成功或者备用电源投入成功的现象不能视为用户停电,而此时敏感负荷用户有可能遭受到一定的电力损失。那么在实际的电力系统供电中,提升供电的可靠性,需要从电网方面进行综合考虑,以优化的配电网结构,改善动态带电压质量[1]。

  3大功率电力电子技术提高供电可靠性的应用

  3.1转换开关

  转换开关电源供电中发挥着重要的作用,在实际电力系统电源供电中,包含两路或者多路的电源供电,转换开关应用其中,能够实现多路电源之间的相互切换。在本文中以两路电源供电为例进行分析,当有一个电源电路在正常供电时,则另外一个线路中的电源供电就会处于备用状态。一旦线路中出现线常用电源供电异常的情况时,转换开关开始发挥作用,自动切换到被用电源线路中。以转换开关的形式,实现线路正常供电,其开关投入使用成本较低,应用广泛[2]。

  3.2动态电压恢复器

  动态电压恢复器简称DVR,DVR通过线路中的变压器串联在线路电源与敏感负荷之间。当线路正常输电时,线路中在没有产生电压跌落的.情况,DVR完全不发挥作用,其在线路中所输出的电压补偿为0。当线路中出现了较大的电压跌落时,此时,DVR就会发挥其真正的作用,DVR通过自身输出与跌落电压值相同的电压补偿值,来实现线路中的电压补偿。线路中所补偿的线路电压为额定电压。从DVR的工作原理上进行分析,其实际的作用就是对提供线路中电压补偿,避免线路由于电压跌落出现故障[3]。

  3.3不间断供电电源

  不间断的供电电源,简称为UPS。目前,随着科技不断发展,UPS已经逐渐趋向于市场化,其主要有三种类型:在线型、离线型以及在线互动型。在实现的UPS中,需要具有储能单元,其中最为常见的储能单元为的电池储能。在线型的UPS在逆变器支持下实现负荷供电,实际供电与电源无关,因此在电压质量获得上比较高。

  3.4发电机励磁

  大功率的电力电子技术在发电机励磁中的应用,作用突出。首先需要对发电机的励磁系统进行分析,发电机的励磁系统能够实现机端电压的维持,合理分配多台电发电机之间的无功功率,继而提升电力系统的稳定性。目前,在电力系统中,半导体励磁是其最为主要的励磁方式,在实际电力系统运行中,可以按照电源的不同,将半导体励磁分为他励和自励。现行在电力企业中比较实用的就是基于励磁电力电子装置的三相晶闸管全桥整流器,在该整流器中采用时间常数比较小的一阶惯性环节。

  4微网可靠性供电

  4.1交流微网结构与特点

  典型的交流微网组成有:光伏发电、储能电源、风电机组以及柴油发电机组等。在以上的组成部件中,风电以及储能等电源,在电力电子变换器的转换下,实现了对额定电压频率交流电的转换,并在静态开关的转换下连接在微网母线上。交流微网的特点比较突出,主要表现在以下方面。第一,微网的电压等级比较低,在实际线路中与配电网相连,在大功率电力系统的尾端;第二,容量比较小,在10KV等级的微网容量为数百千瓦到十兆瓦之间;第三,电流实现双向流动,在微网结构中为分布式的电源网状,基于微网这样的特点,其能够实现的功能比较多。一方面能够实现对大电网的功率输送,另一方面,也能够从大功率电网中吸收功率;第四,微网具有多种工作模式,其中比较突出的就是并网和离网两种形式。并网工作形式帮助微网能够在大功率电网中正常运行,而离网是指,当大电网出现故障时,微网能够迅速的脱离大功率电网,而实现独立运行。

  4.2微网分布式电源电流保护

  微网分布式电源主要包含两大类的电源,第一,逆变器接口电源。例如光伏发电、风力发电以及储能电源等。第二,传统发电机接口电源。例如柴油发电机、燃汽轮机等。当微网分布式电源线路中出现故障时,以上两种电源类型所能够提供的短路电流存在着较大的差异。对于逆变器接口电源来说,电源线路在线路中容易受到电力电子器件等耐流能力的影响与限制,其电源所能够提供的短路电流值不超过线路中额定电流的1.5倍。在这样的线路背景下,该种电源类型不能够实现有力的电流保护。而对于另外一种分布式电源进行分析,当线路中发生短路时能够利用串联等效电抗的形式,实现较大短路电流的供应,因此该种电源类型与逆变器接口分布式电源相比,具有明显的优势,能够实现电流保护。

  5结论

  随着电力系统不断发展,电力系统的供电可靠性逐渐受到社会所关注。因此,在本文中对大功率电力电子技术进行分析,研究大功率电力电子技术提高供电可靠性的应用,并对微网可靠性供电进行详细研究。在电力电力技术可靠性供电中的应用研究中,分别对转换开关、动态电压恢复器、不间断供电电源以及发电机励磁等方面进行详细研究,针对这些供电系统的作用论述,希望能够为电力供电系统发展带来帮助。

  参考文献:

  [1]贺超.具有高可靠性的数字化大功率电力电子集成模块研究与应用[D].杭州:浙江大学,20xx.

  [2]周明磊.电力机车牵引电机在全速度范围的控制策略研究[D].北京:北京交通大学,20xx.

  [3]郑晟.中高压电力电子变换中的功率单元及功率器件的级联关键技术研究[D].杭州:浙江大学,20xx.

电力电子技术15

  摘要:《电力电子技术应用》课程在我校项目化教学改革中,取得了一些成绩,也暴露了一些问题。本文从几个方面出发对我校的《电力电子技术应用》课程项目化教学改革做出了总结,并说明了现存的优势和不足。

  关键词:电力子技术应用;项目化教学

  1项目化教学是目前课程教学改革的主要趋势

  长期以来,无论是本科学校还是专科学校,电类专业在《电力电子应用技术》课程教学过程中,通常都采用的教学方式是实践和理论分开教授。此种方式导致很少有学生能够把理论和实践结合起来,提升自己的实践动手能力和解实际决问题的能力。在教育改革提出以就业为导向,以职业能力培养为目标的教育目标后,从自动化专业学生就业岗位调研出发,将《电力电子应用技术》课程教学改为项目化教学。实际上项目化教学改革就是将专业基础课程和专业课程的传统教学内容转变为各课程对应的技能训练项目,根据技能训练项目的要求具体开展教学,以及考核学生的技能训练效果,从而使得人才培养能力目标能够实现,所以项目化教学成为当前大学教学改革的主要方向。我校电类专业的《电力电子应用技术》教学的主要模式也有传统的理论和实践分开讲授模式改为项目化教学。项目化教学也成为很多专业课程教学模式改革的主要趋势。

  2《电力电子技术应用》项目化教学的优势

  课程改革是保证高校教育人才培养目标的实现,提高教学质量,达到职业技能资格要求的一种有效途径。项目化教学是以实际工程项目为依托,项目内容是理论结合实践的集中体现。《电力电子应用技术》课程项目化教学的优势主要体现在以下几个方面。

  2.1注重培养学生学习的自主性

  《电力电子应用技术》课程采用项目化教学后,每个项目中用动画体现内容的丰富性和趣味性,同时灵活多变的动画设计简化了理论内容,提高了学生的理解力,从而提高学生的学习兴趣,增加其自主学习的意识,养成自主学习的习惯。采用灵活的教学方式,增加师生互动性,增加角色的带入性次数等等多种方式促进学生学习的自主性。

  2.2注重培养学生专业知识和实践技能

  专业实践技能是在专业基础知识熟练掌握的基础上,通过强化专业技能训练,提升实际操作能力而获得的实践技能。而项目化教学的项目本身就是一个产品或设备控制系统的完成过程,是集专业知识与实际技能于一体的综合性教学内容。项目化教学从项目的信息整理、方案设计实施到最后的项目测试评价等,每一个环节的要求都是学生自主、教师辅助完成,所以完全可以通过具体项目的教学过程,达到培养学生专业知识牢固性与实践技能的熟练性目标。

  2.3注重培养学生项目知识与职业资格证的紧密结合性

  项目化教学改革的'前提就是就业为导向,以职业能力培养为目标,所以项目化教学课程内容必然有与之对应的职业资格证必修内容。因此项目化教学可以提高职业职格证的通过率。我校项目化教学实施以来取得的成绩,电工证比例增加,高级、中级比较增加,兴趣小组的比赛成绩提高,学生的动手能力增加提高了就业率,企业的毕业生满意度提高,专升本升学率提高,自主创业成功率提高等等方面,都说明了《电力电子技术应用》课程采用项目化教学既适应了教学改革的潮流,又达到了项目化教学的目的要求,实现了以职业能力培养为目的的素质化教学目标。

  3《电力电子技术应用》项目化教学的不足

  3.1教学内容的简单项目式分化,与工程实际脱节

  《电力电子技术应用》课改后虽然采用了项目化教学方式,但内容并没有按照项目化教学的需求实行,而是简单的内容分化或内容实验化。这一做法导致两种结果,一是与现实工程实际项目脱节,并没有把企业实际工程项目作为项目化教学内容,当然这些与实践实训基地不足的、与企业联系欠缺等方面都有关系;二是简单的内容分仅仅把原理论内容简单的分到各个项目下,没有严格的项目教学设计、论证、规划,以及各项目之间的内在联系,导致项目化教学的目标不能完全实现。例如:把原单相半波可控整流电路作为一个项目,项目下提出项目要求、项目内容、电路原理、具体步骤、项目所需工具、仿真工具及结果。这些仅仅是把原单相半波可控整流电路的内容进行了项目分解,并没有实际的工程项目支撑,所以此类项目化教学不可能实现项目化教学改革的目的,这是项目化教学效果不理想的原因之一。

  3.2师资能力不足

  项目化教学要求教师不但具有丰富的专业理论知识,也需要扎实的实践操作技能,也就是需要做过实际工程项目的双师型教师。这样才能有效的指导学生完成项目的一体化过程,包括项目方案设计、前期准备、实施、效果鉴定等。目前,我系双师型师资欠缺,依靠实验老师和理论老师的协同作业,难以很好的完成每个整体项目的教学目的。这也是造成项目化教学效果不够理想的原因之一。

  3.3教学安排与教学实施的矛盾

  项目化教学需要一个弹性的教学安排,根据项目化教学实际实施过程中的要求,及时调整教学安排,但是目前的统一教条化的教学安排制约着课程教学改革的步伐,使项目化教学在实施过程中困难重重。我校《电力电子技术应用》课程在项目化教学中遇到各部门间协调性差、审批手续麻烦、行政部门质疑声音多等。包括传统的考核方式也是制约因素之一。总之,我校《电力电子技术应用》课程项目化教学的改革有实际成效,也存在许多待解决的问题。无论改革过程中存在多少问题,走出第一步最重要,也最困难。我们已经走完了第一步,所以接下来的《电力电子技术应用》课程项目化教学路会越走越好,项目化教学的优势会越来越多,项目化教学效果会越来越好。

【电力电子技术】相关文章:

电力电子技术07-22

电力电子技术【精品】07-22

电力电子技术的应用及发展论文06-20

电力电子技术汇编(15篇)07-22

电力系统中电力电子技术的应用的论文12-12

智能电网中电力电子技术论文12-12

电力电子技术锦集(15篇)07-22

大功率电力电子技术论文12-12

实验教学电力电子技术论文12-13