高一数学评课稿

时间:2024-08-01 15:25:20 其他 我要投稿

高一数学评课稿

  在教学工作者开展教学活动前,常常需要准备评课稿,所谓评课,是指对课堂教学成败得失及其原因做中肯的分析和评估,并且能够从教育理论的高度对课堂上的教育行为作出正确的解释。怎样写评课稿才更能起到其作用呢?以下是小编帮大家整理的高一数学评课稿,希望对大家有所帮助。

高一数学评课稿

高一数学评课稿1

  今天听了郑老师的一节《函数的概念》。函数是中学数学中最重要的基本概念之一,它贯穿在中学代数的始终,从初一字母表示数开始引进了变量,使数学从静止的数的计算变成量的变化,而且变量之间也是相互联系、相互依存、相互制约的,变量间的这种依存性就引出了函数。在初中已初步探讨了函数概念、函数关系的表示法以及函数图象的绘制。到了高一再次学习函数,是对函数概念的再认识,是利用集合与对应的思想来理解函数的定义,从而加深对函数概念的理解。函数与数学中的其他知识紧密联系,与方程、不等式等知识都互相关联、互相转化。函数的学习也是今后继续研究数学的基础。在中学不仅学习函数的概念、性质、图象等知识,尤为重要的是函数的思想要更广泛地渗透到数学研究的全过程。

  函数是中学数学的主体内容,起着承上启下的作用。函数又是初等数学和高等数学衔接的枢纽,特别在应用意识日益加深的今天,函数的实质是揭示了客观世界中量的相互依存又互有制约的关系。因此对函数概念的再认识,既有着不可替代的重要位置,又有着重要的现实意义。

  学生在学习本节内容之前,已经在初中学习过函数的概念,并且知道可以用函数描述变量之间的依赖关系。然而,函数概念本身的表述较为抽象,学生对于动态与静态的认识尚为薄弱,对函数概念的本质缺乏一定的认识,对进一步学习函数的图象与性质造成了一定的难度。初中是用运动变化的观点对函数进行定义,虽然这种定义较为直观,但并未完全揭示出函数概念的本质。例如,对于函数如果用运动变化的观点去看它,就不好解释,显得牵强。但如果用集合与对应的观点来解释,就十分自然。因此,用集合与对应的思想来理解函数,对函数概念的.再认识,就很有必要。由于数学符号的抽象性,学生因此会望而却步,从而影响了学生学习数学的积极性。高一学生虽然在初中已接触了函数的概念,但在重新学习它时还是存在一定的障碍,其中一个原因就是对新引进的函数符号“ ”不甚其解。教师应在教学中有意识地挖掘函数符号的审美因素,以美启真。在本节课的教学过程中,教师应该给学生提供实践动手的机会,为学生创设熟悉的问题情境,引导学生观察、计算、思考,从而理解本节内容的学习要注意运动变化观和集合对应观两个观念下函数定义的对比研究;注意借助熟悉的一次函数、二次函数、反比例函数加深对函数这一抽象概念的理解;要重视符号的学习,借助具体函数来理解符号的含义,由具体到抽象,克服由抽象的数学符号带来的理解困难,从而提高理解和运用数学符号的能力。

高一数学评课稿2

  今天在高一幻师(1)班,听了倪玲玲上的一节《向量的加法》的数学公开课,听完感想颇多。下面就我个人谈谈对倪玲玲老师这节课的看法不成熟看法,如有不妥的地方请大家多多谅解。

  一、从教学基本功来看。

  倪老师虽然是一个教龄未满三年的新教师,但她的教学基本功是非常扎实的。教学中,倪教师的语言生动准确,板书工整规范,课堂调控能力强,教学富有条理,PPT课件做的漂亮,演示过程有条有理。

  二、从教材处理来看。

  倪老师对于教材的处理还欠缺火候,不敢大胆尝试教学改革,这可能是新教师的通病。我们中职的学生数学基础普遍差,所以我们教师备教案时要从学生的学情来考虑,最好把学生当做什么都不懂的学生来教。事实上,我们中职学生没有几个数学基础好的,很多学生会因为一节或两节课听不懂数学课,而丧失了对数学学习的兴趣。倪老师的这节课,从引入看,设置的情境问题起点比较高,问的是“船从码头出发,先向东行驶20公里,再向北行驶20公里,请问船的位置在哪?”。这个问题跟后面的讲解的例题内容大致相同,结果倪老师一提问,所有学生都蒙住了,课堂一下沉闷下来,还好倪老师教学机智比较好,马上转移话题打破冷场,从另一个角度作引导。在讲解向量加法的三角形法则时,倪老师一再强调三角形加法法则要注意“首尾相接首尾连”,但还是没有把向量相加的方向指向讲清楚,确切的.说“两个向量连接相加,它的方向由向量最初的起点指向向量最后的终点”。另外,在讲解两个向量求和作图之前,最好能把向量相等的定义事先复习下,这样可以这个内容的学习作铺垫。

  三、从课堂的动态生成来看。

  这节课的师生互动性不强,课堂问题形式单一。课堂问题大都采用教师提问,学生群答形式,不利于开发学生学习的潜力与发觉学生学习中存在哪些问题。如果课堂中,能穿插个别提问或其它形式的教学方式,可能对活跃课堂氛围会更好,课堂教学可能会更有效。

  四、从教学评价机制来看。

  这节课还缺少对学生的评价性语言。对学生来说,教师的一个中肯的评价,都是对学生的鼓励。现代的教学要求我们,每上一节课都要让不同层次的学生都能学有所得,体验成功的喜悦。对于这方面,我们可能都不够重视,今后要多改观。

高一数学评课稿3

  今天在高一幻师(1)班,听了倪**上的一节《7.1.2向量的加法》的数学公开课,听完感想颇多。下面就我个人谈谈对倪玲玲老师这节课的看法不成熟看法,如有不妥的地方请大家多多谅解。

  一、从教学基本功来看,倪老师虽然是一个教龄未满三年的新教师,但她的教学基本功是非常扎实的。教学中,倪教师的语言生动准确,板书工整规范,课堂调控能力强,教学富有条理,PPT课件做的漂亮,演示过程有条有理。

  二、从教材处理来看,倪老师对于教材的处理还欠缺火候,不敢大胆尝试教学改革,这可能是新教师的通病。我们中职的学生数学基础普遍差,所以我们教师备教案时要从学生的.学情来考虑,最好把学生当做什么都不懂的学生来教。事实上,我们中职学生没有几个数学基础好的,很多学生会因为一节或两节课听不懂数学课,而丧失了对数学学习的兴趣。倪老师的这节课,从引入看,设置的情境问题起点比较高,问的是“船从码头出发,先向东行驶20公里,再向北行驶20公里,请问船的位置在哪?”。这个问题跟后面的讲解的例题内容大致相同,结果倪老师一提问,所有学生都蒙住了,课堂一下沉闷下来,还好倪老师教学机智比较好,马上转移话题打破冷场,从另一个角度作引导。在讲解向量加法的三角形法则时,倪老师一再强调三角形加法法则要注意“首尾相接首尾连”,但还是没有把向量相加的方向指向讲清楚,确切的说“两个向量连接相加,它的方向由向量最初的起点指向向量最后的终点”。另外,在讲解两个向量求和作图之前,最好能把向量相等的定义事先复习下,这样可以这个内容的学习作铺垫。

  三、从课堂的动态生成来看,这节课的师生互动性不强,课堂问题形式单一。课堂问题大都采用教师提问,学生群答形式,不利于开发学生学习的潜力与发觉学生学习中存在哪些问题。如果课堂中,能穿插个别提问或其它形式的教学方式,可能对活跃课堂氛围会更好,课堂教学可能会更有效。

  四、从教学评价机制来看,这节课还缺少对学生的评价性语言。对学生来说,教师的一个中肯的评价,都是对学生的鼓励。现代的教学要求我们,每上一节课都要让不同层次的学生都能学有所得,体验成功的喜悦。对于这方面,我们可能都不够重视,今后要多改观。

高一数学评课稿4

  5月8日上午,我听了一节高一年数学公开课《正弦定理》。课后进行教研组评议。

  1、这是一节师生互动好、教师有激情的课。教师讲解清楚,透彻,由于教师的亲和力大,学生积极性调动得较充分,感觉到课堂的一种和谐的氛围。

  2、教师有钻研,课堂条理清晰,但重点处理有偏颇。本节课教学重点是正弦定理的证明与定理的简单应用。在评议中,大家认为,三角形的.解的情况的讨论和归纳应该作为下节课的一个重点,提前来讲,显得过犹不及,学生产生知识学习的障碍,同时,由于是在临近下节课的讲解,造成教师抛出结论多,学生无法很好思考和消化理解,当然,教师通过数轴上“01211”,让学生形象理解和记忆,很有新意。事实上,平时学生若能抓住内角和等于180度、大边对大角,两边之和大于第三边等,再结合图形,就能很好判断三角形的解个数。

  3、正弦定理的证明方法讲哪种更好呢?有老师认为,用三角形面积法证明更易于学生理解和接受,能够更好地进行定理应用的例题讲解;有老师认为,定理证明的几种应该都介绍给学生,让学生更好掌握定理的形成过程,这更符合新课标的要求;有老师认为,定理讲解就针对不同层次学生,对于基础较好班级可以更深入去挖掘一下,拓展学生思维,反之,不提倡讲得太多;有老师认为,定理推导要创设情境,引导学生去发现、类比等。

  4、如何进行情境引入创设?本节课从白塔高度的测量引入,但由于塔心不可到达,这样引入效果不好。若能从解三角形需三条边和三个角中,寻找能构成一个三角形需要什么条件?引导学生从三角形全等到边角关系(三边、两边一角、两角一边,三角),会更自然些。

  5、定理的应用中的例题一题多变,有利于培养发散思维。当然,解题中教师板演示范在尽量规范,渗透方程思想、数形结合思想等。

  6、注意定理表述上图形、文字、符号的转换。

高一数学评课稿5

  本节课教学过程,自然而然水道渠成。俗话说:巧妇难为无米之炊,因此这“米”非常关键。教师通过千辛万苦地搜集素材,千淘万漉地比较筛选;对每个细节的追根溯源,可谓精益求精。本节课目标明确,以书本为中心,源于书本,而不拘泥于书本, 赵老师以庄子的话做引入,很自然的引出本节课的内容,引入自然,贴合学生实际。通过“自主、合作、探究”的教学方式,从多种渠道进行教学。观季老师的整堂课,教学设计充分体现了教学的目标要求,教学的思路清晰,教学环节紧紧相扣,过渡自然。教师言语、表情和蔼可亲教师素质高,懂的用自己特有的方式吸引学生对数学的学习兴趣,优雅的.形体语言让学生赏心悦目。但课堂气氛还不够活跃,师生间交流互动有所欠缺,在教学中始终渗透数学思想方法,比如类比法,方程思想等。确实有很多值的我学习的地方,希望以后能有更多的这样的学习机会。

高一数学评课稿6

  最早提出函数(function)概念的,是17世纪德国数学家莱布尼茨。最初莱布尼茨用“函数”一词表示幂。1755年,瑞士数学家欧拉又给出了不同的函数定义。中文数学书上使用的“函数”一词是转译词,是我国清代数学家李善兰在翻译《代数学》(1895年)一书时,把“function”译成“函数”的。

  函数作为初等数学的核心内容,贯穿于整个初等数学体系之中,它是数学学科的重要概念,也是高中数学的一个核心概念。函数这一章在高中数学中起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从变量间的对应来描绘函数概念,起到了上承集合、下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。学习函数的概念不仅对后继的函数性质等的学习夯实基础,而且可以启发学生用数学的眼光观察生活,将函数的思想融入今后的学习生活,体会数学与生活的紧密联系。

  初中的函数定义:在某个变化过程中有两个变量,设为x和y,如果在变量x的允许取值范围内,变量y随着x的变化而变化,那么变量y叫做变量x的函数,x叫做自变量。表达两个变量之间依赖关系的数学式子称为函数解析式。

  课本描述函数时,以“变化过程”为背景,以“变量x的取值有范围”为前提,主要强调“两个变量之间存在着确定的依赖关系”。

  高中的函数定义:在某个变化过程中有两个变量x,y,如果对于x在某个实数集合D内的每一个确定的值,按照某个对应法则f,y都有唯一确定的实数值与它对应,那么y是x的函数,记作,x叫做自变量,y叫做应变量,x的取值范围D叫做函数的定义域,和x对应的y的值叫做函数值,函数值的集合叫做函数的值域。

  对高中函数定义的理解:

  1.函数的核心是对应法则,通常用记号f表示函数的对应法则,在不同的函数中,f的具体含义不一样。函数记号y=f(x)表明,对于定义域D的任意一个x在“对应法则f”的作用下,y都有唯一确定的实数值与它对应。当x在定义域中取一个确定的a,对应的函数值即为f(a)。

  2.Y是唯一确定的实数值,函数的对应可以是一对一,多对一,但不可以是一对多。

  3.函数的三要素是定义域、值域及对应法则。在函数的三要素中,当其中的两要素已确定时,则第三个要素也就随之确定了。如当函数的'定义域,对应法则已确定,则函数的值域也就确定了。

  4.函数符号y=f(x)的说明:

  (1)“y=f(x)”即为“y是x的函数”的符号表示,不是f与x的乘积;

  (2)y=f(x)不一定能用解析式表示,函数的解析式、图象、表格都是表示函数的方法;

  (3)f(x)与f(a)是不同的,通常,f(a)表示函数f(x)当x=a时的函数值;

  (4)在同时研究两个或多个函数时,常用不同符号表示不同的函数,除用符号f(x)外,还常用g(x)、F(x)、φ(x)等符号来表示。

  5.定义域是函数的重要组成部分,如f(x)=x(x∈R)与g(x)=x(x≥0)是不同的两个函数。

  《函数的概念》起始课设定的教学重点应该是“函数概念的形成”。教学中应由实例抽象归纳出函数概念,要求学生必须通过自己的努力探索才能得出,对学生的能力要求比较高。因此,我认为发展学生的抽象思维能力以及对函数概念本质的理解是本节课的教学难点。

  具体授课时可从两个方面进行概念的生成,一方面从现实生活中例举出的物理学、天文学、社会科学的实例,让学生感受到它的数学原型,并且教师提问应层层深入、循序渐进地从几个具体实例中抽象出函数的概念,语言的表达也要精确。另一方面,让学生回忆初中所讲的函数概念,重视与学生原有知识间的联系和递进,也说明了原有概念的不足和重新给出函数概念的必要性。整个教学过程应以学生的思维过程为主线,真正把函数放在日常生活中去,函数概念的生成得体清晰。让函数回归实例,让学生重新体会感受,温故加深体会。第三,让学生通过自己的理解去分析现实生活中的函数关系。这样设置既可突破重难点,又让学生体会了“数学有用数学好用”的数学思想,真正体现学生的主体作用。

  当然,对函数概念的理解需要一个过程,并非一次就可以实现,因此教师应善于稚化自己的思维,精心设计、耐心引导方可帮助学生突破难点,最终达到对函数这一重要数学概念较为完整的理解。

【高一数学评课稿】相关文章:

高一数学《向量的加法》评课稿03-24

高一数学《向量的加法》评课稿(精选)07-16

(精选)数学评课稿06-14

数学评课稿(精选)10-01

数学评课稿01-28

数学评课稿03-01

数学课评课稿03-08

《数学广角》评课稿12-10

初中数学评课稿精选04-09