- 相关推荐
物理动态变化规律总结
总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,他能够提升我们的书面表达能力,让我们一起来学习写总结吧。你想知道总结怎么写吗?以下是小编收集整理的物理动态变化规律总结,仅供参考,欢迎大家阅读。
物理动态变化规律总结1
一、电路的组成:
1、定义:把电源、用电器、开关、导线连接起来组成的电流的路径。
2、各部分元件的作用:
(1)电源:提供电能的装置;
(2)用电器:工作的设备;
(3)开关:控制用电器或用来接通或断开电路;
(4)导线:连接作用,形成让电荷移动的通路
二、电路的状态:通路、开路、短路
1、定义:
(1)通路:处处接通的电路;
(2)开路:断开的电路;
(3)短路:将导线直接连接在用电器或电源两端的电路。
2、正确理解通路、开路和短路
三、电路的基本连接方式:串联电路、并联电路
四、电路图(统一符号、横平竖直、简洁美观)
五、电工材料:导体、绝缘体
1、导体
(1)定义:容易导电的物体;
(2)导体导电的原因:导体中有自由移动的电荷;
2、绝缘体
(1)定义:不容易导电的物体;
(2)原因:缺少自由移动的电荷
六、电流的形成
1、电流是电荷定向移动形成的;
2、形成电流的电荷有:正电荷、负电荷。酸碱盐的水溶液中是正负离子,金属导体中是自由电子。
七、电流的方向
1、规定:正电荷定向移动的方向为电流的方向;
2、电流的方向跟负电荷定向移动的方向相反;
3、在电源外部,电流的`方向是从电源的正极流向负极。
八、电流的效应:热效应、化学效应、磁效应
九、电流的大小:I=Q/t
十、电流的测量
1、单位及其换算:主单位安(A),常用单位毫安(mA)、微安(μA)
2、测量工具及其使用方法:(1)电流表;(2)量程;(3)读数方法(4)电流表的使用规则。
十一、电流的规律:(1)串联电路:I=I1+I2;(2)并联电路:I=I1+I2
【方法提示】
1、电流表的使用可总结为(一查两确认,两要两不要)
(1)一查:检查指针是否指在零刻度线上;
(2)两确认:①确认所选量程。②确认每个大格和每个小格表示的电流值。两要:一要让电流表串联在被测电路中;二要让电流从“+”接线柱流入,从“—”接线柱流出;③两不要:一不要让电流超过所选量程,二不要不经过用电器直接接在电源上。
在事先不知道电流的大小时,可以用试触法选择合适的量程。
2、根据串并联电路的特点求解有关问题的电路
(1)分析电路结构,识别各电路元件间的串联或并联;
(2)判断电流表测量的是哪段电路中的电流;
(3)根据串并联电路中的电流特点,按照题目给定的条件,求出待求的电流。
物理动态变化规律总结2
一、原子结构知识点:
1、电子的发现和汤姆生的原子模型:
(1)电子的发现:
1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。
电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。
(2)汤姆生的原子模型:
1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。
2、α粒子散射实验和原子核结构模型
(1)α粒子散射实验:1909年,卢瑟福及助手盖革手吗斯顿完成
①装置:
② 现象:
a. 绝大多数α粒子穿过金箔后,仍沿原来方向运动,不发生偏转。
b. 有少数α粒子发生较大角度的偏转
c. 有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。
(2)原子的核式结构模型:
由于α粒子的质量是电子质量的七千多倍,所以电子不会使α粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对α粒子的运动产生明显的影响。如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的α粒了所受正电荷的作用力在各方向平衡,α粒了运动将不发生明显改变。散射实验现象证明,原子中正电荷不是均匀分布在原子中的。
1911年,卢瑟福通过对α粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。
原子核半径小于10-14m,原子轨道半径约10-10m。
3、玻尔的.原子模型
(1)原子核式结构模型与经典电磁理论的矛盾(两方面)
a. 电子绕核作圆周运动是加速运动,按照经典理论,加速运动的电荷,要不断地向周围发射电磁波,电子的能量就要不断减少,最后电子要落到原子核上,这与原子通常是稳定的事实相矛盾。
b. 电子绕核旋转时辐射电磁波的频率应等于电子绕核旋转的频率,随着旋转轨道的连续变小,电子辐射的电磁波的频率也应是连续变化,因此按照这种推理原子光谱应是连续光谱,这种原子光谱是线状光谱事实相矛盾。
(2)玻尔理论
上述两个矛盾说明,经典电磁理论已不适用原子系统,玻尔从光谱学成就得到启发,利用普朗克的能量量了化的概念,提了三个假设:
①定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然做加速运动,但并不向外在辐射能量,这些状态叫定态。
②跃迁假设:原子从一个定态(设能量为E2)跃迁到另一定态(设能量为E1)时,它辐射成吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即 hv=E2-E1
③轨道量子化假设,原子的不同能量状态,跟电子不同的运行轨道相对应。原子的能量不连续因而电子可能轨道的分布也是不连续的。即轨道半径跟电子动量mv的乘积等于h/2π的整数倍,即:轨道半径跟电了动量mv的乘积等于h/2π的整数倍,即
n为正整数,称量数数
(3)玻尔的氢子模型:
①氢原子的能级公式和轨道半径公式:玻尔在三条假设基础上,利用经典电磁理论和牛顿力学,计算出氢原子核外电子的各条可能轨道的半径,以及电子在各条轨道上运行时原子的能量,(包括电子的动能和原子的热能。)
氢原子中电子在第几条可能轨道上运动时,氢原子的能量En,和电子轨道半径rn分别为:
其中E1、r1为离核最近的第一条轨道(即n=1)的氢原子能量和轨道半径。即:E1=, r1=×10-10m(以电子距原子核无穷远时电势能为零计算)
②氢原子的能级图:氢原子的各个定态的能量值,叫氢原子的能级。按能量的大小用图开像的表示出来即能级图。
其中n=1的定态称为基态。n=2以上的定态,称为激发态。
二、原子核知识点
1、天然放射现象
(1)天然放射现象的发现:1896年法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看不见的射线。这种射线可穿透黑纸而使照相底片感光。
放射性:物质能发射出上述射线的性质称放射性
放射性元素:具有放射性的元素称放射性元素
天然放射现象:某种元素白发地放射射线的现象,叫天然放射现象
天然放射现象:表明原子核存在精细结构,是可以再分的
(2)放射线的成份和性质:用电场和磁场来研究放射性元素射出的射线,在电场中轨迹:
2、原子核的衰变:
(1)衰变:原子核由于放出某种粒子而转变成新核的变化称为衰变在原子核的衰变过程中,电荷数和质量数守恒
γ射线是伴随α、β衰变放射出来的高频光子流
在β衰变中新核质子数多一个,而质量数不变是由于反映中有一个中子变为一个质子和一个电子
(2)半衰期:放射性元素的原子核的半数发生衰变所需要的时间,称该元素的半衰期。
一放射性元素,测得质量为m,半衰期为T,经时间t后,剩余未衰变的放射性元素的质量为m
3、原子核的人工转变:原子核的人工转变是指用人工的方法(例如用高速粒子轰击原子核)使原子核发生转变。
(1)质子的发现:1919年,卢瑟福用α粒子轰击氦原子核发现了质子。
(2)中子的发现:1932年,查德威克用α粒子轰击铍核,发现中子。
4、原子核的组成和放射性同位素
(1)原子核的组成:原子核是由质子和中子组成,质子和中子统称为核子
在原子核中:
质子数等于电荷数
核子数等于质量数
中子数等于质量数减电荷数
(2)放射性同位素:具有相同的质子和不同中子数的原子互称同位素,放射性同位素:具有放射性的同位素叫放射性同位素。
正电子的发现:用α粒子轰击铝时,发生核反应。
发生+β衰变,放出正电子
三、核能知识点:
1、核能:核子结合成的子核或将原子核分解为核子时,都要放出或吸收能量,称为核能。
2、质能方程:爱因斯坦提出物体的质量和能量的关系:
E=mc2——质能方程
3、核能的计算:在核反应中,及应后的总质量,少于反应前的总质量即出现质量亏损,这样的反就是放能反应,若反应后的总质量大于反应前的总质量,这样的反应是吸能反应。
吸收或放出的能量,与质量变化的关系为:
为了计算方便以后在计算核能时我们用以下两种方法
方法一:若已知条件中以千克作单位给出,用以下公式计算
公式中单位:
方法二:若已知条件中以作单位给出,用以下公式计算
公式中单位:
4、释放核能的途径——裂变和聚变
(1)裂变反应:
①裂变:重核在一定条件下转变成两个中等质量的核的反应,叫做原子核的裂变反应。
②链式反应:在裂变反应用产生的中子,再被其他铀核浮获使反应继续下去。
链式反应的条件:
③裂变时平均每个核子放能约1Mev能量
1kg全部裂变放出的能量相当于2500吨优质煤完全燃烧放出能量
(2)聚变反应:
①聚变反应:轻的原子核聚合成较重的原子核的反应,称为聚变反应。
②平均每个核子放出3Mev的能量
③聚变反应的条件;几百万摄氏度的高温
物理动态变化规律总结3
磁感应强度(magneticfluxdensity),描述磁场强弱和方向的物理量,是矢量,常用符号B表示,国际通用单位为特斯拉(符号为T)。磁感应强度也被称为磁通量密度或磁通密度。在物理学中磁场的强弱使用磁感应强度来表示,磁感应强度越大表示磁感应越强;磁感应强度越小,表示磁感应越弱。
磁感应强度的定义公式
磁感应强度公式B=F/(IL)
磁感应强度是由什么决定的?磁感应强度的大小并不是由F、I、L来决定的,而是由磁极产生体本身的属性。
如果是一块磁铁,那么B的大小之和这块磁铁的大小和磁性强弱有关。
如果是电磁铁,那么B与I、匝数及有无铁芯有关。
物理网很多文章都建议同学们采用类比的方法来理解各个物理量。我们用电阻R来做个对比。
R的计算公式是R=U/I;可一个导体的电阻R大小并不是由U或者I来决定的。而是由其导体自身属性决定的,包括电阻率、长度、横截面积。同样,磁感应强度B也不是由F、I、L来决定的,而是由磁极产生体本身的属性。
如果同学们有时间,可以把静电场中电容的两个公式来对比着复习、巩固下。
B为矢量,方向与磁场方向相同,并不是在该处电流的受力方向,运算时遵循矢量运算法则(左手定则)。
描述磁感应强度的磁感线
在磁场中画一些曲线,用(虚线或实线表示)使曲线上任何一点的切线方向都跟这一点的磁场方向相同(且磁感线互不交叉),这些曲线叫磁感线。
磁感线是闭合曲线。规定小磁针的北极所指的方向为磁感线的方向。磁铁周围的磁感线都是从N极出来进入S极,在磁体内部磁感线从S极到N极。
磁感线都有哪些性质呢?
⒈磁感线是徦想的,用来对磁场进行直观描述的曲线,它并不是客观存在的。
⒉磁感线是闭合曲线;磁铁的磁感线,外部从N指向S,内部从S指向N;
⒊磁感线的疏密表示磁感应强度的强弱,磁感线上某点的切线方向表示该点的磁场方向。
⒋任何两条磁感线都不会相交,也不能相切。
磁感线(不是磁场线)的'性质与电场线的性质对比来记忆。
磁感应强度B的所有计算式
磁感应强度B=F/IL
磁感应强度B=F/qv
磁感应强度B=ξ/Lv
磁感应强度B=Φ/S
磁感应强度B=E/v
其中,F:洛伦兹力或者安培力
q:电荷量
v:速度
ξ:感应电动势
E:电场强度
Φ:磁通量
S:正对面积
磁通量
磁通量是闭合线圈中磁感应强度B的累积。
⒈定义一:φ=BS,S是与磁场方向垂直的面积,如果平面与磁场方向不垂直,应把面积投影到与磁场垂直的方向上,求出投影面积;
⒉定义二:表示穿过某一面积磁感线条数;此时,我们认为B代表的意义是单位面积内的磁感线密度。
磁通量是标量,但有正、负,正、负号不代表方向,仅代表磁感线穿入或穿出。同学们能不能想到其他类似的物理量呢?比如,电流,也是有“运动方向”的标量。
当一个面有两个方向的磁感线穿过时,磁通量的计算应算“纯收入”,即ф=ф-ф(ф为正向磁感线条数,ф为反向磁感线条数。)
【物理动态变化规律总结】相关文章:
《积的变化规律》教学设计04-03
积的变化规律教学设计02-01
动态清零体现尊重科学尊重规律感想10-13
《积的变化规律》教学设计(荐)04-03
商的变化规律评课稿12-16
(优选)《积的变化规律》教学设计06-01
积的变化规律的优秀评课稿03-02
积的变化规律教学设计12篇06-06
[优选]商的变化规律评课稿02-13