- 相关推荐
高考数学必考题型及答题技巧
高考数学必考题型及答题技巧1
1、解决绝对值问题
主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:
①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2、因式分解
根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:
提取公因式
选择用公式
十字相乘法
分组分解法
拆项添项法
3、配方法
利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有:
4、换元法
解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:
设元→换元→解元→还元
5、待定系数法
待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设②列③解④写
6、复杂代数等式
复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:
(-----)(----)=0两种情况为或型
②配成平方型:
(----)2+(----)2=0两种情况为且型
7、数学中两个最伟大的解题思路
(1)求值的思路列欲求值字母的方程或方程组
(2)求取值范围的思路列欲求范围字母的不等式或不等式组
8、化简二次根式
基本思路是:把√m化成完全平方式。即:
9、观察法
10、代数式求值
方法有:
(1)直接代入法
(2)化简代入法
(3)适当变形法(和积代入法)
注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
11、解含参方程
方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。解含参方程一般要用‘分类讨论法’,其原则是:
(1)按照类型求解
(2)根据需要讨论
(3)分类写出结论
12、恒相等成立的有用条件
(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。
(2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。
13、恒不等成立的条件
由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:
14、平移规律
图像的平移规律是研究复杂函数的重要方法。平移规律是:
15、图像法
讨论函数性质的重要方法是图像法——看图像、得性质。
定义域图像在X轴上对应的部分
值域图像在Y轴上对应的部分
单调性从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上对应的区间是减区间。
最值图像点处有值,图像最低点处有最小值
奇偶性关于Y轴对称是偶函数,关于原点对称是奇函数
16、函数、方程、不等式间的重要关系
方程的根
高考数学答题技巧及方法
1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;
3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;
4、选择与填空中出现不等式的题目,优选特殊值法;
5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;
6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;
7、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;
8、求曲线方程的题目,如果知道曲线的.形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);
9、求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;
10、三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;
11、数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;
12、立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;
13、导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;
14、概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;
15、遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;
16、注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;
17、绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;
18、与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;
19、关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
高考数学必考题型及答题技巧2
1、函数与导数
主要考查数学集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
2、平面向量与三角函数、三角变换及其应用
这一部分是高考的重点但不是难点,主要出一些数学基础题或中档题。
3、数列及其应用
这部分是高考的重点而且是难点,主要出一些综合题。
4、不等式
主要考查数学不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
5、概率和统计
这部分和我们的生活联系比较大,属数学应用题。
6、空间位置关系的定性与定量分析
主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。
7、解析几何
高考的难点,运算量大,一般含参数。
高考对数学基础知识的'考查,既全面又突出重点,扎实的数学基础是成功解题的关键。
高考数学必考题型及答题技巧3
高考数学选择题
运算要快,力戒小题大做。变形要稳,防止操之过急。答案要全,避免对而不全。解题要活,不要生搬硬套审题要细,不能粗心大意。
高考数学填空题
常见的错误或不规范的答卷方式有:字迹不工整、不清晰、字符书写不规范或不正确、分式写法不规范、通项和函数表达式书写不规范、函数解析式书写正确但不注明定义域、要求结果写成集合的不用集合表示、集合的对象属性描述不准确。
高考数学解答题
不仅要提供出最后的.结论,还得写出主要步骤,提供合理、合法的说明。解答题的考点相对较多,综合性强,难度较高,解答题成绩评定不仅看最后的结论,也看推演和论证过程来判分。
【高考数学必考题型及答题技巧】相关文章:
语文高考答题模板各种题型 答题技巧08-23
高考语文各题型答题模板及技巧08-23
高考数学答题技巧05-25
高考数学答题技巧02-02
高考数学答题技巧03-25
[热]高考数学答题技巧06-27
(推荐)高考数学答题技巧05-29
[推荐]高考数学答题技巧05-29
高考数学考场答题技巧01-11