数学文化选修课心得体会

时间:2024-11-14 10:24:37 文化 我要投稿

数学文化选修课心得体会7篇【精华】

  当我们有一些感想时,好好地写一份心得体会,如此就可以提升我们写作能力了。相信许多人会觉得心得体会很难写吧,下面是小编收集整理的数学文化选修课心得体会,欢迎阅读与收藏。

数学文化选修课心得体会7篇【精华】

  数学文化选修课心得体会 篇1

  8月28日,我参加了灵源讲堂“数学专场”的学习,又一次有幸地听到了林培育老师的精彩讲座《依课标抓本质促教学》,他以教师该如何学习课标的方式给我们阐述了在学习课标时的几个重点。

  我最大的感受就是数学教学要抓住数学的本质,数学的'本质是什么呢?数学不仅仅是科学知识的体系,更是人类文化的组成部分,这就要求我们的教育观念要变化,要把学生培养成为具有数学素养的人,要让学生学会数学思考的模式,这才是更重要的内容,尤其是数学思想的渗透更好的说明了这点。要教给学生思考的方法,这样学生学到的数学才是活的数学,才能在以后的学习中灵活运用所学知识。

  林老师又从四基的基本理念揭示数学课程中如何贯彻数学的基本本质,课标理念:人人都能获得良好的数学教育,不同人在数学上得到不同的发展。林老师强调要让数学回归本真与简单,让有价值的数学给孩子们带来信心与乐趣。在讲座中,他通过生动的课堂实录、课例,给我们一一展示了在教学中如何来体现四基,认为数学从现实世界中来,要加强内在逻辑的内化形成新理论,让学生掌握数学的根,再应用到现实生活中去。

  听了林老师的讲座,我深刻地体会到学习的重要性。只有不断的学习,不断加强修养才能提升自己的教学能力。也只有真正读懂学生、读懂教材、读懂课堂,才能为孩子们奉献出既“好吃”又“有营养”的数学,让学生享受“快乐数学”。

  数学文化选修课心得体会 篇2

  大学数学选讲课是对高等数学课的提升和深化,老师针对重难知识点,结合考研真题和参考资料精题,细致向我们讲解。在解题的过程中,老师向我们传授了解题的不同思路角度,教会我们要学会举一反三,将知识点融会贯通。点拨启发式的教学激发着同学们学习的兴致,使我们受益匪浅。

  大学数学选讲不仅对考研的同学有很大帮助,对像我这样不考研学习一般的学生也有益处。刚上大学时,高等数学我一度跟不上,总是云里雾里,后来抓紧学了一阵才有了些头绪。后来,我们学习的专业课如材料力学,结构力学等都用到了高等数学,才愈发感到它的重要性。现在大学数学选讲课,再一次让我面对高等数学,我的态度更加端正谨严。重温旧的知识点,在老师的点拨下,我能发现新的亮点,加深加固了我对知识点的理解和掌握。一题多解的解题过程,启发了我的解题思路,更是帮助我把许多知识点串联起来,增强了记忆。慢慢地,我从学习中找到了乐趣,对学习高等数学也有了信心,信心又激励着我不断探索,我发现学好一门课程树立信心很重要。

  经过一学期的学习,我在高等数学的学习上也逐渐积累了一些经验体会。我感受到大学数学的学习和中学数学的学习是不样的'。在大学之前的学习时,都是老师在黑板上写满各种公式和结论,我便一边在书上勾画,一边在笔记本上记录。然后像背单词一样,把一堆公式与结论死记硬背下来。哪种类型的题目用哪个公式、哪条结论,老师都已总结出来,我只需要将其对号入座,便可将问题解答出来。而现在,我不再有那么多需要识记的结论。唯一需要记住的只是数目不多的一些定义、定理和推论。老师也不会给出固定的解题套路。因为高等数学与中学数学不同,它更要求理解。只要充分理解了各个知识点,遇到题目可以自己分析出正确的解题思路。所以,学习高等数学,记忆的负担轻了,但对思维的要求却提高了。每一次高数课,都是一次大脑的思维训练,都是一次提升理解力的好机会。

  高等数学的学习目的不是为了应付考试,因此,我们的学习不能停留在以解出答案为目标。我们必须知道解题过程中每一步的依据。正如我前面所提到的,中学时期学过的许多定理并不特别要求我们理解其结论的推导过程。而高等数学课本中的每一个定理都有详细的证明。最初,我以为只要把定理内容记住,能做题就行了。然而,渐渐地,我发现如果没有真正明白每个定理的来龙去脉,就不能真正掌握它,更谈不上什么运用自如了。于是,我开始认真地学习每一个定理的推导。有时候,某些地方很难理解,我便反复思考,或请教老师、同学。尽管这个过程并不轻松,但我却认为非常值得。因为只有通过自己去探索的知识,才是掌握得最好的。

  学习高等数学还要注意一下几点。

  一、走出心理障碍

  我想学不好高数的大多数人都会说自己学习高数没有兴趣,学习高数确实枯燥乏味,面对的除了x,y,z别无他物。这些同学当中极大数是高中时的数学没有学懂,因此一上来就失去了自信心,自认为自己不行学不懂高数。为什么这么说呢?因为我也认为学习高数是很枯燥的事,尤其是在凳子上一坐两个小时,听着教授的讲解,这更像是在解读天书。虽是这样说,但是学习高数的兴趣是自己激发的。就拿我来说吧,我曾经的数学学的并不好,高考时就因为数学没考好落榜,当时的心情可想而知,但来到大学看到高数课本时,刚开始自己也觉得很恐怖,因为在数学前边又加了“高等”二字,想想自己连“低等数学”都没学好,高等数学要怎么学呢?和大家一样,初来大学每天去占座,然后试着去认真听老师讲课,认认真真听了几节课下来,我对高数产生了“一点点”兴趣,觉得高数不过如此嘛,然后就越来越注重高数的学习。通过这个例子,我只想说对高数或者别的科目没兴趣那只是心理作怪,因此要克服学习高数的困难应该先克服自己的心理,具体应该怎样克服这种心理难关呢?我认为最重要的是要找回自己的自信心,不要以为自己就学不好高数,不要以为自己就不是学习高数的料,你没试着认真的学,你咋知道学不好呢,因此学好高数我认为第一点就是要有自信心和专心的思考,这才是学习好高数的基础。

  二、注重学习方法

  对于高数的学习,不同的人有不同的学习方法,我也建议大家能够总结出自己的一套学习方法,只有适合自己的学习方法才是最好的方法,下面我就简单介绍一下我的学习方法,我自认为不是最好的,但是最实用的。其实对于高数的学习很简单,学习数学首先就要不怕挫折,有勇气面对遇到的困难,有毅力坚持继续学习,大学数学与中学数学明显的一个差异就在于大学数学强调数学的基础理论体系,而中学数学则是注重计算与解题,所以:首先要尽快的适应这种差异,把思维放开了,不要太死板。然后就是要把握三个环节,提高学习效率:

  1)课前预习:怎样预习呢?了解老师即将讲什么内容,相应的复习与之相关内容,把老师要讲的内容和与之相关的内容从头到尾看一遍,比如说老师要讲积分,那就把导数公式,微分复习一下,所谓的看并不是走马观花,要静下心来看,但看到预习的内容里有不懂的地方做个记号,老师讲课的时候肯定会讲到,因为高数老师可都是教授,学历和经验都很丰富。

  2)认真上课:带着问题认真听课,一定要集中注意力,专心听讲,重点是注意老师的讲解方法和解题思路,其分析问题和解决问题的过程,记好课堂笔记,因为听课是一个全身心投入——听、记、思相结合的过程,如果老师让做题那一定要动手去做,做题才能体现出你的掌握情况,如果有不懂的地方,那下课一定要积极主动地问老师,老师肯定很乐意的给你讲解,直到你听懂为止,还有一点在大学给老师留一个好的印象很重要,多向老师请教就是一个很好的方法,会让老师觉得你爱学习,这样一举两得的事何乐而不为呢?

  3)课后复习:当天必须回忆一下老师讲的内容,看看自己记得多少;然后打开教材把老师今天所讲的内容认真看一次,完善笔记,尤其是书上的例题,都很经典,一定要掌握解题方法,这点很重要,因为很多知识你以为课堂上接受了,但实际过几天就忘了,所以课后必

  须复习,不懂的地方多和同学交流一下,多交流学习高数的心得。这里所说的交流不仅仅限于同学,也可以和老师,至于交流学习高数的心得不一定也要找好学生,其实,学的稍后的同学有时他们的学习方式很好,只是没有重视和培养而已,因此不要小看任何人。

  数学文化选修课心得体会 篇3

  20xx年12月9日,数学教研会组织了同课异构教研活动。听了陈玉芝和封惠两位数学老师的执教的《平均数》一课,此次听课收获很大,受益匪浅,不仅让我领略到了两位数学教师的讲课风采,也让我从中发觉到了在课堂教学方面自身的浅薄与不足。在以后的教学中,我会努力上好每一节课,向身边的优秀教师学习。下面我谈谈自己的体会。

  第一、教师善于创设情境;教师在教学过程中创设的情境,目标明确,能为教学服务。提高了学生的好奇心、激发了求知欲,进而促进其思维。教师创设的情境要真正为教学服务,如果只是为了情境而情境,那就是一种假的教学情境。

  在这两节课里,上课的老师都能根据学生的特点为学生创设充满趣味的学习情景,以激发他们的学习兴趣。最大限度地利用小学生好奇、好动、好问等心理特点,并紧密结合数学学科的自身特点,创设使学生感到真实、新奇、有趣的学习情境,激起学生学习兴趣。让学生用数学思想去思考问题,解决问题。使他们在质疑中思考,在思考中学到知识。

  第二、教师在数学教学中,根据学生的心理发展特点,把枯燥、呆板的课堂教学改变了,从而也培养了学生学习数学的兴趣,激发了孩子的求知欲。尤其是在听课过程中,我更加深刻的体会到这些数学教师教学方法的与众不同,也充分体现了“教师以学生为主体,学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”的教学理念。

  听了2节课,每堂课细细的听下来后,感觉每位授课教师都煞费苦心的作了周密而细致的'准备,所以每堂课都有很闪光的亮点供我们参考、学习、借鉴,当然有比较就会有鉴别。所以我会把其中的精华加以吸取,尝试运用到以后的课堂教学过程中,来逐步的提高和完善自己的课堂教学。

  总之,平时一定要多学习新课改理念,认真钻研教材,挖掘教材,积极参加教科研活动,提高自己的业务水平、授课能力,多听同任教

  师的课,取人之长,补己之短,争取在以后的教学中取得好成绩。

  数学文化选修课心得体会 篇4

  数学具有科学价值和应用价值,若问数学有文化价值吗?数学能培养人的理性思维能力,数学的理性精神体现在哪些方面?只有真正理解数学文化的定义、内涵和特点,才能真正理解数学的教育价值,达到让数学文化贯穿高中数学教学始终的目的。我主要从三方面谈谈对数学文化的理解:

  一、数学文化的定义

  在理解数学文化定义之前,首先了解什么是文化及文化的特点,简单地说,文化就是指人类在社会历史实践过程中所创造的物质文明和精神文明的总和。一般来讲又特指精神文明。文化有可识别性、传承性、扩展性的特点,除此之外,文化还具有地域性和民族性的特点。传承性是文化最基本、最本质特征。

  “数学一直是人类文明中的主要文化力量,它与人类文化休戚相关,在不同时代,不同文化中,这种力量的大小有所变化”。认同了文化的定义,就不难理解《普通高中数学课程标准(版)》给出了数学文化定义:数学文化是指数学的思想、精神、语言、方法、观点,以及它们的形成和发展;还包括数学在人类生活、科学技术、社会发展中的贡献和意义,以及与数学相关的人文活动。数学具有文化的所有特点,所以上述定义也可以表述为:数学文化是指人类在长期的数学实践过程中创造的物质文明和精神文明的总和。

  数学文化的定义反映了数学的本质:数学是人类以其深刻而独特的思想不断地对现实世界进行的高层次抽象的一种创造活动。从文化本质和数学的本质来看,数学就是一种文化。这种文化推动了社会的进步和人类的发展。

  二、数学文化的内涵

  我主要从以下几方面理解数学文化的内涵:

  (1)数学教育既能够培养人的严密的逻辑思维,又能培养人的直观形象思维;

  (2)数学问题往往富有挑战性,合理的数学学习有利于学生形成自我激励机制;

  (3)数学中的整体性思想、化归思想、在变化中把握不变的思想及优化思想,有利于人们树立合作意识、本质意识、联系意识、简约意识;

  (4)“美感和美的意识是数学直觉的本质”,数学美诱发人们对数学的兴趣,促进人们对数学的学习、发展和应用;

  (5)数学是人类最通用的语言,也是简洁而又精确的语言;不仅是人们交流的重要工具,而且越来越有力地支持着科技乃至整个人类文明的进步。

  简言之,数学不仅能培养学生的理性思维,而且还能涵养学生的品格。通过掌握数学的思想、方法,欣赏数学语言之美,激发学生学习数学的兴趣。因此数学文化的内涵不仅表现在知识本身的科学价值,还体现了它的精神价值、应用价值和教育价值。

  三、数学文化的特征

  《普通高中数学课程标准(实验)》解读认为“数学的抽象性和形式化的特点是数学文化的重要特征;数学的严密性也是数学具有很强文化性的重要特征;数学在应用方面的'广泛性是数学文化的重要特征”。

  黄秦安先生从系统的观点出发,指出数学文化所具有的8大特征:

  ①是传播人类思想的一种基本方式;

  ②是自然、社会、人之间相互关系的一个重要尺度;

  ③是一个动态的、充满活力的科学生物;

  ④具有相对的稳定性和连续性;

  ⑤是一个包含着自然真理在内的具有多重真理性的真理体系;

  ⑥是一个以理性认识为主体的具有强烈认识功能的思想结构;

  ⑦是一个由各个分支的基本观点、思想方法交叉组合构成的具有丰富内容和广泛应用价值的技术系统;

  ⑧是一门具有自身独特美学特征、功能与结构的美学分支。以上从不同的角度刻画了数学作为一种文化所独有的一些特征,揭示了作为文化的数学与作为科学的数学的区别所在。

  “传承性”是文化最基本、最本质特征。数学作为一种文化,数学文化的基本特征是继承性、民族性、变异性。在理论研究层面上,只有在继承性、民族性的研究基础上,才能讨论不同民族的即所谓人类共有的数学文化特征。

  数学的思想、语言和方法在高中教学中早已渗透到课堂教学中,而作为数学文化的基本特征的继承性、民族性、变异性在高中数学课堂教学的落实还需要一个过程。随着教学理念的不断进步,老师们在涉及数学史的教学中不再只关注中国的数学家而是放眼世界的数学家,本人在3月份有关数学文化问卷调查中设置了这样一个问题“请写出你知道的数学家的名字(知道几个就写几个)”好多同学不仅填写了祖冲之、赵爽、刘徽等,还填写了牛顿、达芬奇、毕达哥拉斯、欧拉、费马等等。

  四、自己在“数学文化”教学中的不足和今后努力方向

  要真正理解数学文化的定义、内涵和特点,才能真正理解数学的教育价值,在平时的教学中要想实现数学文化的真正体现和有效渗透,可以从以下几方面入手①深入挖掘数学概念、定理、结论的缘起、形成和发展中蕴涵了哪些数学文化。如:集合的概念、函数的概念、解析几何的概念、向量的概念等;②精心解读数学家的数学精神、思想和方法。数学家在数学创造活动中表现的崇高信念、审美直觉、理性思维、高尚情操是数学文化的原创精神。如:数学家祖冲之、刘徽、祖暅、笛卡尔、欧拉等;③分析数学产生发展的历史和逻辑,数学的产生与科学的发展、社会的进步和人类理性思维提升有怎样的内在联系,数学知识、思想和方法的现实来源是什么,生活中有哪些事物与数学息息相关。如:从孟姜女庙的对联可以联想到三角函数的周期性;在对数函数的教学时让学生对唐山大地震(震级为7.8级)与汶川地震(震级为8.0级)从振幅上进行对比,了解什么是震级;学完等比数列让学生对储蓄利率、房贷利率年限及还款数额的关系进行总结等等。

  总之,数学作为文化的一部分,其最根本的特征是它表达了一种精神——探索精神和理性精神。有关探索精神是高中数学教学一直倡导的精神。数学崇尚实事求是的精神,具有可贵的质疑、怀疑和批判态度。数学崇尚独立思考、追求真理、判断的合理性和公正性、对事物不先入为主、不存偏见、不偏听偏信、客观公正、尊重事实、以理服人。这些构成科学精神的核心特征品质恰恰也正是人性和理性的思想精髓。这正是高中新课程标准要求学生达到提高文化素养,养成求实、说理、批判、质疑等理性思维的习惯和锲而不舍的追求真理精神的目标。只有求真才能求善、求美。在平时的课堂教学中只有把提高数学素养、展现数学文化的内涵作为数学的主要目标,才能逐步把学生的数学素养转化为学生内在的文化素养,最终达到立德树人的目的。

  数学文化选修课心得体会 篇5

  在很多学生甚至是一些老师眼里,数学只是一种应用工具,是一些符号,一些计算,枯燥乏味,毫无生动感人之处,这是对数学的一种片面的认识,其实数学是一种文化,它的发展本身就是一个艰辛的路程,在它的知识不断的丰富不断的发展中,蕴含着人类发展的历史,而在我们的课堂中,往往只强调了数学的工具作用,弱化了它的文化价值,从而也忽略了数学中的教育基因。当我们都关注到“数学是一种文化”这一理念后,在很多老师的课堂上自然而然的就引入了数学史。

  数学作为一种文化现象,早已是人们的常识。而在一学期的数学文化学习中,更使我深深的认识到了数学的重要性和通过其所获取的感知。

  通过对数学文化的学习,培养大学生的抽象思维、形象思维和逻辑思维等方面的能力,特别是大学生的创新能力,提高文化素质,以适应社会需要。在上课期间,我到图书馆借了数学文化这本书,本书共分八章,简要阐述了数学文化的学科体系,以及数学文化的`哲学观、社会观、美学、创新观、方法论等方面的主要内容,并附有专章介绍几千年来的数学思想发展史。数学文化是坚持理论联系实际,注重介绍思想,介绍方法,重在开拓人们思考问题的思路,激发人们的创新意识。

  “数学美”是数学文化的重要内容,数学中的美大致可以分为四类:简洁美、对称美、和谐统一美、奇异美。数学美学是构成人的精神与外部世界相融合的基本中介,美学教育的价值不仅在陶冶情操,而且引导人积极向上,献身科学,还有利于改善思维品质。在教学过程中应引导学生去发现数学中的美。如,简洁美在数字符号、运算符号等数学符号上,在命题的表述和论证上,在数学的逻辑体系上都有表现。在几何图形中存在着大量的对称的例子。例如二次函数、一元二次方程、一元二次不等式之间的关系体现出数学中的和谐统一美。而数学中的奇异美则是吸引着人们去考察、了解、研究、欣赏数学的重要原因。

  在数学文化学习中,使我深深的认识到了数学的重要性和通过其所获取的感知。对于个人的发展来说,数学不仅仅是一门工具,还是具有内在价值的精神产物和文明成果,在一个人运用数学进行思维的过程中,所锻炼的不仅仅是我们的思维方法,更重要的是,我们的许多观念也会发生变化,产生新的认识,从而更大和更深刻的领悟人类的自由。我们会了解所谓的客观的审美标准是什么,并意识到数学中存在的和谐、对称之美的本质及其独特性,我们甚至会根据自然的数学文化来重新认识和领会世界,并从而为之高声赞叹。数学文化的辉煌是人类文明灿烂的一个极为重要的组成部分。历史证明了这一点,未来还会继续证明这一点。总的来说,我感觉这门课很好,我个人是非常地喜欢,也学习到了很多知识,教学模式也很适合我们当代大学生。通过讲台的自我展现,更能引发我们的上课积极性。很感谢这门课,让我有了一次难忘的经历,并且又再一次感受到了您讲课的精彩乐趣。很希望老师您能够继续这样的授课方式,使以后的同学也能体会到那份真正意义的快乐,因为那一刻舞台属于自己!

  数学文化选修课心得体会 篇6

  一、数学文化的内涵

  “文化”一词在《辞海》中的解释是:人类在社会历史发展过程中所创造的物质财富和精神财富的总和。“数学作为一门学科,它应该是精神生活的产物,因此数学属于文化的范畴。数学作为一种文化,除了具有文化的某些普通特征外,还有其独有的特征,这是其区别于其他文化形态的主要方面。数学文化包括数学的思想精神、方法、观点、语言以及它们的形成和发展过程,同时它还包含数学家、数学史、数学美、数学教育、数学发展中的人文成分以及数学与社会的联系、数学与各种文化的关系,等等。”从而极大地丰富了人类文化,同时也推动了人类文化的发展,因此数学是人类文化有机的和最重要的组成部分。

  “数学文化”一词在1980年由美国学者怀尔德(R?Wilder)在《作为文化系统的数学》一书中提出,自20世纪80年代起,我国数学教育专家、学者开始对数学文化开展了大量研究,进入21世纪之后,数学教育就是数学文化的教育的观点得到认可,一个重要的标志是数学文化走进中小学课堂,渗入到实际数学教学中。教育部颁布的《普通高中数学课程标准》(实验)中,有四个地方用大段文字从数学文化的角度来阐述观点,并且在标题中使用了“数学文化”一词。

  20世纪初的数学曾经存在着脱离社会文化的孤立主义倾向,并影响着中国。在中国数学教育界,曾有“数学=逻辑”的观念,学生们把数学看作“一种符号的游戏”。过去由于强调基础教育和应试教育,很多教师在教学时不注意数学文化的渗透,只是单调死板的对知识进行讲授和大量练习,使很多学生从小就在心里埋下了数学难、恐惧、厌烦的种子,久而久之,学生的意识里深深烙下了“数学没意思的烙印”。如今把数学放在文化的背景下加以教学,数学文化作为教材的组成部分,能帮助学生了解数学在人类文明发展中的作用,激发学习数学的兴趣,感受数学家治学的严谨,努力使学生在学习数学过程中受到文化感染,体会数学的文化品位,体察社会文化和数学文化之间的互动。

  二、数学文化的价值

  数学的工具作用是有目共睹的,但数学不仅仅是工具,它以自己独特的思维方式、独特的表现形式,与文学、艺术等一样,具有重要的文化价值。一方面,数学是人类思维训练的体操,经过长期的数学学习,能让学生养成缜密严格的思维习惯,培养学生深入细致的洞察和抽象概括能力、逻辑推理能力、严谨的思维分析和判断能力,从而提高大学生的思维素质。另一方面,数学对人的观念、品质、道德情操的形成具有十分重要的影响。它能培养人坚强的毅力、百折不饶的精神,使学生在今后的工作中,遇到问题不偏听偏信,思路清晰、条理分明、严格依据客观事实做出判断,并能有条不紊地处理头绪纷繁的各项工作。

  爱因斯坦曾说过,什么是教育?教育就是人走出校园许多年后,将所学的知识都忘记了,但还能够干出事业来,这就是教育的本质意义。曾有学生提出过“人为什么要学数学”这个问题。数学知识对很多人来说,也许一辈子都是用不上,但为什么数学还会成为全世界中小学的主要科目?并且是所花费的时间最多的科目?最重要的是数学体现的是人类的思维精华,能熏陶人的思维品质,培养人的情感态度,是为了提高全民族的数学文化素质。它会影响一个人的言行、思维方式等各个方面。数学教育不仅要使学生掌握数学知识,也要让学生获得极为重要的数学素养。

  三、数学文化背景下的数学教学

  如何在数学文化背景下提高数学教学质量,使学生能喜欢数学、学好数学,激发和调动学生学习数学的积极性是我们长期以来关注的问题。经过多年的探索,体会如下:

  1、注重数学史与数学知识的结合。

  以往学生认为数学枯燥、难学,一个重要原因是教材的内容从形式上是抽象和严密的.,各章节的内容之间除了定义、定理的推导及证明,就是例题和练习,学生并知道这些知识的来龙去脉,不能引起他们的兴趣。因此,在教学中,教师要注重把一些重要的数学史知识介绍给学生,使学生掌握数学发展的基本规律,了解数学的基本思想,有助于学生对概念有一个整体认识。例如,在讲授极限概念时,可以先介绍战国时期公孙龙的一个命题:“一尺之棰,日取其半,万世不竭”,及刘徽的割圆术。刘徽的“割圆术”不仅计算出π的近似值,而且还提供了一种极限的思想,也反映出我国数学的悠久历史;在讲微积分之前,先介绍微积分的创立,同时配合图片介绍牛顿、莱布尼兹是如何在不同的背景、方法和形式上提出并创立微积分的,还可以进一步介绍微积分发现的优先权争论;在讲积分时,介绍积分号“∫”是莱布尼兹发明的,是英文字母sum的开头字母的缩写,数学上很多符号都是他发明的,并介绍在数学史上是先有定积分,然后才有不定积分的,等等,这些都会引起学生的兴趣。而且数学史上无数数学家的奋斗历程,也可以使学生树立正确的数学观,培养学生顽强的毅力、坚强的品格。

  2、让学数学成为娱乐。

  数学娱乐的理论是王青建教授提出的。数学大师陈省身、陶哲轩等也分别提出“数学好玩”和“去与数学玩”的观点,这些都反映出数学家享受数学乐趣的心情,反映了他们对数学研究和数学教育的态度。

  在教学过程中,教师应尽量用娱乐的态度、愉快的心情引入数学概念:张奠宙先生曾谈到一个老师,引用南宋诗人叶绍翁的“满园春色关不住,一枝红杏出墙来”的诗句,引入无界变量的概念,使学生学得兴趣盎然。我们在教学中也不妨引用李白的“孤帆远影碧空尽,唯见长江天际流”讲解极限的意境;通过思考阿基里斯悖论的故事,让学生理解“无限趋近……”的概念;在解题过程中,借用图形来说明时,可以用著名数学家华罗庚的论述:“数缺形时少直觉,形少数时难入微,形数结合百般好,割裂分家万事……”让学生感到数学也可以用文学形式来描述,使数学与文化交融到一起,把数学文化发挥得淋漓尽致。

  3、注意知识性、趣味性、思想性和应用性的统一。

  数学课常常被认为是枯燥难懂、脱离实际的。为了改变这种印象,唤起学生对数学的兴趣,让学生真正体会到数学是有用的,就要注意课程的趣味性和应用性。例如,讲数列时,从“兔子问题”和“斐波那契数列”引课,同时进一步说明这个数列还出现在很多自然现象中,“例如:植物叶子在茎上的排列,菠萝的鳞片,树枝的生长分叉,蜜蜂进蜂房的路线等”,会使学生感到既有知识性又有趣味性。例如,在讲“函数极值和最值”问题时,可以介绍我们常喝的可口可乐瓶的设计;讲概率问题时,可通过让学生自己亲身试验抛硬币、掷筛子等,得出概率和频率的关系,还可以让学生们计算彩票中奖的可能性,掌握概率的计算等;在讲单利和复利计算时,让学生亲自到银行体验存款;通过这些简单可行的活动,都可以让学生在动中学,点燃学生学习数学的热情。子曰“知之者不如好之者,好之者不如乐之者”,真实地反映出了趣味和乐学的重要意义。

  4、提高教师素质和修养

  教师作为数学文化的传播者,教师的数学观念、数学能力、数学理解和数学教育价值认识直接影响着数学教学。一支高素质的教师队伍是实施素质教育的良好保证。因此,要进行高质量的数学教学,数学教师必须提高自身的数学修养,拓宽自己的知识面,要多读数学名著,多了解数学史、科学史、文化史、社会学等方面的知识。研读数学名著会增强教师从事数学教科研活动的文化底蕴。教师要有足够深、广的知识,还要对数学的产生、发展的历史背景有全局性的了解和把握,对数学内容本质的内在联系有一定的认识。同时挖掘数学与其他学科的联系,体现数学的应用价值,拓展数学文化的内涵,借鉴、吸收他人的成功经验,将其精华融进自己的教学方法之中,形成最能发挥自己个性特点的教学方法。这样才能创造出完美的课堂教学。

  数学文化选修课心得体会 篇7

  12月11日,我有幸在湾子参加了数学名师教学观摩课活动。几位名师用他们独特的教学艺术给我们呈现了一节节精彩纷呈的课堂,使我陶醉在他们教学艺术的旋律之中,引领我们朝着课堂教学所蕴涵的教学理念进行深层次的思考。下面我就结合实际来谈谈自己的一些体会。

  一、注重与学生沟通,拉近教师与学生的距离感

  课前教师同学生交流,让学生的身心愉悦,以饱满的热情,亢奋的斗志投入新授学习这一点值得学习。每位教师上课前都与学生交流教材以外的话题,比如:你知道老师叫什么,你了解老师多少等话题,以示缓解学生的紧张感,为学生在课堂上正常的思考问题、解决问题搭好桥、铺好路。

  二、结合教材,创设有效的情境,真正为教学服务

  每一位上课的老师都能根据小学生的特点为学生创设充满趣味的学习情景,充分发挥学生的主体作用,以激发他们的学习兴趣。注重从学生的生活实际出发,引导学生自主学习、合作交流的教学模式,让人人学有价值的数学,不同的人在数学上得到不同的发展,体现了新课程的教学理念。

  三、学习方式生活化、艺术化,使学生感受数学与生活的联系

  数学源于生活,生活中处处有数学。在我们日常生活中充满着许多数学知识,在教学时融入生活中的数学,使他们感到生活与数学密切相关的道理,感到数学就在身边,对数学产生亲切感,激发他们学习数学、发现数学的愿望。借助于学生的生活经验,把数学课题用学生熟悉的、感兴趣的、贴近于他们实际生活的素材来取代。

  四、学习方式活动化,让学生主动获取知识

  活动是学生所喜欢的学习形式。创设学生喜欢的活动,使其在自由、放松、活跃的学习氛围中积极主动地感知、探究、发现数学问题、从而创造性地解决问题。有的教师把学生分成几组,以便于学生交流讨论,提高学生解决问题的能力。

  在这些观摩课当中,我看到的是老师与学生真实的交流,不再是单纯的教师教、学生学,而是一个统一体。每一位老师都放手让学生自主探究解决问题,教学中遇到一些简单的`问题,就让学生自己通过动口、动手、动脑去解决,为学生提供了自由发挥,处理问题的空间,并且老师不断鼓励学生积极尝试,主动去探索问题,让每个学生都有参与思考和发表意见的机会,让每位学生都成为数学学习的主人。对于学生一时想不出来的问题,每一位教师都很有耐性的对学生进行有效的引导,充分体现“教师以学生为主体,学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”的教学理念。

  五、坚定了自己的几个认识。

  (1)合理使用教材,大胆选取学生身边的素材充实课堂,能更好的体现数学的生活化。

  (2)信息窗信息的收集与问题提出的操作策略。以前我就提倡教师引导学生观察信息窗收集信息,提出问题。除了科学引导,适时激励外教师要重视板书的作用。要把信息窗中的主信息、主问题板书在黑板上,形成一个完整的传统样的文字应用题模式,引导学时理解图意。这次听课找到了这样的佐证,且效果很好。

  (3)探究与渗透的关系怎样更合理?数学课需要探究,但绝不是最原始的经历,这种探究需要教师适时的铺垫引导。如果坎过大,沟过深,教师就要帮学生找一梯子,放一小船,引导学生思考的方向,从而达到成功的彼岸。从外省老师的讲课中体会较深华。

  总之,通过这次学习,令我的眼界大开,领略了许多优秀老师的教学风采,为我的课堂教学增加了大量的宝贵经验。希望今后类似的活动还能有机会参加,我会将学到的经验运用到自己的课堂教学中,不断提高自己的教学水平。

【数学文化选修课心得体会】相关文章:

数学文化选修课的心得体会03-28

数学文化选修课心得体会07-06

数学文化选修课的心得体会07-22

数学文化选修课心得体会[实用]08-22

数学文化选修课心得体会(8篇)06-24

文化选修课心得体会09-26

选修课心得体会01-29

音乐选修课心得体会08-30

关于选修课的心得体会04-02