高中数学教学设计

时间:2024-11-15 14:47:18 设计 我要投稿

高中数学教学设计模板

  在教学工作者实际的教学活动中,常常需要准备教学设计,借助教学设计可以提高教学效率和教学质量。一份好的教学设计是什么样子的呢?下面是小编收集整理的高中数学教学设计模板,欢迎大家分享。

高中数学教学设计模板

高中数学教学设计模板1

  教学目标

  1.明确等差数列的定义.

  2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

  3.培养学生观察、归纳能力.

  教学重点

  1. 等差数列的概念;

  2. 等差数列的通项公式

  教学难点

  等差数列“等差”特点的理解、把握和应用

  教具准备

  投影片1张

  教学过程

  (I)复习回顾

  师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

  (Ⅱ)讲授新课

  师:看这些数列有什么共同的特点?

  1,2,3,4,5,6; ①

  10,8,6,4,2,…; ②

  生:积极思考,找上述数列共同特点。

  对于数列①(1≤n≤6);(2≤n≤6)

  对于数列②-2n(n≥1)(n≥2)

  对于数列③(n≥1)(n≥2)

  共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

  师:也就是说,这些数列均具有相邻两项之差“相等”的`特点。具有这种特点的数列,我们把它叫做等差数。

  一、定义:

  等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

  如:上述3个数列都是等差数列,它们的公差依次是1,-2, 。

  二、等差数列的通项公式

  师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:

  若将这n-1个等式相加,则可得:

  即:即:即:……

  由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

  如数列①(1≤n≤6)

  数列②:(n≥1)

  数列③:(n≥1)

  由上述关系还可得:即:则:=如:三、例题讲解

  例1:(1)求等差数列8,5,2…的第20项

  (2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

  解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

  (Ⅲ)课堂练习

  生:(口答)课本P118练习3

  (书面练习)课本P117练习1

  师:组织学生自评练习(同桌讨论)

  (Ⅳ)课时小结

  师:本节主要内容为:①等差数列定义。

  即(n≥2)

  ②等差数列通项公式 (n≥1)

  推导出公式:(V)课后作业

  一、课本P118习题3.2 1,2

  二、1.预习内容:课本P116例2P117例4

  2.预习提纲:

  ①如何应用等差数列的定义及通项公式解决一些相关问题?

  ②等差数列有哪些性质?

高中数学教学设计模板2

  一、课题:

  人教版全日制普通高级中学教科书数学第一册(上)《2.7对数》

  二、指导思想与理论依据:

  《数学课程标准》指出:高中数学课程应讲清一些基本内容的实际背景和应用价值,开展“数学建模”的学习活动,把数学的应用自然地融合在平常的教学中。任何一个数学概念的引入,总有它的现实或数学理论发展的需要。都应强调它的现实背景、数学理论发展背景或数学发展历史上的背景,这样才能使教学内容显得自然和亲切,让学生感到知识的发展水到渠成而不是强加于人,从而有利于学生认识数学内容的实际背景和应用的.价值。在教学设计时,既要关注学生在数学情感态度和科学价值观方面的发展,也要帮助学生理解和掌握数学基础知识和基本技能,发展能力。在课程实施中,应结合教学内容介绍一些对数学发展起重大作用的历史事件和人物,用以反映数学在人类社会进步、人类文化建设中的作用,同时反映社会发展对数学发展的促进作用。

  三、教材分析:

  本节内容主要学习对数的概念及其对数式与指数式的互化。它属于函数领域的知识。而对数的概念是对数函数部分教学中的核心概念之一,而函数的思想方法贯穿在高中数学教学的始终。通过对数的学习,可以解决数学中知道底数和幂值求指数的问题,以及对数函数的相关问题。

  四、学情分析:

  在ab=N(a>0,a≠1)中,知道底数和指数可以求幂值,那么知道底数和幂值如何求求指数,从学生认知的角度自然就产生了这样的需要。因此,在前面学习指数的基础上学习对数的概念是水到渠成的事。

  五、教学目标:

  (一)教学知识点:

  1、对数的概念。

  2、对数式与指数式的互化。

  (二)能力目标:

  1、理解对数的概念。

  2、能够进行对数式与指数式的互化。

  (三)德育渗透目标:

  1、认识事物之间的相互联系与相互转化。

  2、用联系的观点看问题。

  六、教学重点与难点:

  重点是对数定义,难点是对数概念的理解。

  七、教学方法:

  讲练结合法八、教学流程:

  问题情景(复习引入)——实例分析、形成概念(导入新课)——深刻认识概念(对数式与指数式的互化)——变式分析、深化认识(对数的性质、对数恒等式,介绍自然对数及常用对数)——练习小结、形成反思(例题,小结)

  八、教学反思:

  对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,教材内容的处理收到了一定的预期效果,尤其是练习的处理,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。

  对于本教学设计,时间仓促,不足之处在所难免,期待与各位同仁交流。

高中数学教学设计模板3

  教学准备

  教学目标

  解三角形及应用举例

  教学重难点

  解三角形及应用举例

  教学过程

  一、基础知识精讲

  掌握三角形有关的定理

  利用正弦定理,可以解决以下两类问题:

  (1)已知两角和任一边,求其他两边和一角;

  (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题:

  (1)已知三边,求三角;

  (2)已知两边和它们的夹角,求第三边和其他两角。

  掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题。

  二、问题讨论

  思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的`讨论。

  思维点拨:三角形中的三角变换,应灵活运用正、余弦定理。在求值时,要利用三角函数的有关性质。

  例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南方向300 km的海面P处,并以20 km / h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60 km,并以10 km / h的速度不断增加,问几小时后该城市开始受到台风的侵袭。

  一、小结:

  1、利用正弦定理,可以解决以下两类问题:

  (1)已知两角和任一边,求其他两边和一角;

  (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);

  2、利用余弦定理,可以解决以下两类问题:

  (1)已知三边,求三角;

  (2)已知两边和它们的夹角,求第三边和其他两角。

  3、边角互化是解三角形问题常用的手段。

  三、作业:P80闯关训练

高中数学教学设计模板4

  一、单元教学内容

  (1)算法的基本概念

  (2)算法的基本结构:顺序、条件、循环结构

  (3)算法的基本语句:输入、输出、赋值、条件、循环语句

  二、单元教学内容分析

  算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力

  三、单元教学课时安排:

  1、算法的基本概念3课时

  2、程序框图与算法的基本结构5课时

  3、算法的基本语句2课时

  四、单元教学目标分析

  1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的.含义

  2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。

  3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。

  4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

  五、单元教学重点与难点分析

  1、重点

  (1)理解算法的含义

  (2)掌握算法的基本结构

  (3)会用算法语句解决简单的实际问题

  2、难点

  (1)程序框图

  (2)变量与赋值

  (3)循环结构

  (4)算法设计

  六、单元总体教学方法

  本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。

  七、单元展开方式与特点

  1、展开方式

  自然语言→程序框图→算法语句

  2、特点

  (1)螺旋上升分层递进

  (2)整合渗透前呼后应

  (3)三线合

  一横向贯通

  (4)弹性处理多样选择

  八、单元教学过程分析

  1、算法基本概念教学过程分析

  对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。

  2、算法的流程图教学过程分析

  对生活中的实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。

  3、基本算法语句教学过程分析

  经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程图和基本算法语句表达算法。

  4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

  九、单元评价设想

  1.重视对学生数学学习过程的评价

  关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。

  2.正确评价学生的数学基础知识和基本技能

  关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法

高中数学教学设计模板5

  前言

  为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在20xx年由福建省普通教育教学研究室组织,举办了一次教学设计大赛活动。这次活动数学学科高中组共收到有49篇教学设计文章。获奖文章推荐评审专家组本着公平、公正的原则,经过认真的评审,全部作品均评出了相应的奖项;专家组还为获得一、二等奖的作品撰写了点评。本稿收录的作品全部是参加此次福建省教学设计竞赛获奖作者的文章。按照征文的规则,我们对入选作品的格式作了一些修饰,并经过适当的整合,以飨读者。

  在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的.前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的。部分体现大纲教材内容的文章则排在后面。

  不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程。书中每一篇的教学设计都耐人寻味,都能带给我们许多遐想和启迪。你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家。谢谢你们!

  1、集合与函数概念实习作业

  一、教学内容分析

  《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。—————《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。

  二、学生学习情况分析

  该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。

  三、设计思想

  《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。

  四、教学目标

  1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;

  2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;

  3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。

  五、教学重点和难点

  重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;

  难点:培养学生合作交流的能力以及收集和处理信息的能力。

  六、教学过程设计

  【课堂准备】

  1.分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。

  2.选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。

高中数学教学设计模板6

  一、指导思?

  在学校、数学组的领导下,严格执行学校的各项教育教学制度和要求,认真完成各项任务,严格执行“三规”、“五严”。利用有限的时间,使学生在获得所必须的基本数学知识和技能的同时,在数学能力方面能有所提高,为学生今后的发展打下坚实的数学基础。

  二、教学措施

  1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。

  2、坚持每一个教学内容集体研究,充分发挥备课组集体的力量,精心备好每一节课,努力提高上课效率。调整教学方法,采用新的教学模式。

  3、脚踏实地做好落实工作。当日内容,当日消化,加强每天、每月过关练习的检查与落实。坚持每周一周练,每章一章考。通过周练重点突破一些重点、难点,章考试一章的查漏补缺,章考后对一章的不足之处进行重点讲评。

  4、周练与章考,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重能力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的.力度。每一次考试试题坚持集体研究,努力提高考试的效率。

  5。注重对所选例题和练习题的把握:

  6。周密计划合理安排,现数学学科特点,注重知识能力的提高,提升综合解题能力,加强解题教学,使学生在解题探究中提高能力。

  7。多从“贴近教材、贴近学生、贴近实际”角度,选择典型的数学联系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种能力的机会,从而达到提升学生数学综合能力之目的不脱离基础知识来讲学生的能力,基础扎实的学生不一定能力强。教学中不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合能力。

  三、对自己的要求——落实教学的各个环节

  1、精心上好每一节课

  备课时从实际出发,精心设计每一节课,备课组分工合作,利用集体智慧制作课件,充分应用现代化教育手段为教学服务,提高四十五分钟课堂效率。

  2、严格控制测验,精心制作每一份复习资料和练习

  教学中配备资料应要求学生按教学进度完成相应的习题,老师要给予检查和必要的讲评,老师要提前向学生指出不做的题,以免影响学生的学习。三类练习(大练习、限时训练、月考)试题的制作分工落实到每个人(备课组长出月考卷,其他教师出大练习、限时训练卷),并经组长严格把关方可使用。注重考试质量和试卷分析,定期组织备课组教师进行学情分析,发现问题,寻找对策,及时解决,确保学生的学习积极性不断提高。

  3、做好作业批改和加强辅导工作

  我们的工作对象是活生生的对象──学生,这里需要关心、帮助及鼓励。我们要对学生的学习情况做大量的细致工作,批改作业、辅导疑难、及时鼓励等,特别是对已经出现数学学习困难的学生,教我们的辅导更为重要。在教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,不仅要给他们解疑难,还要给他们鼓信心、调动自身的学习积极性,帮助他们树立良好的学习态度,积极主动地去投入学习,变“要我学”为“我要学”。

高中数学教学设计模板7

  一、首先要认识高中数学与初中数学特点的变化

  1、数学语言在抽象程度上突变

  2、思维方法向理性层次跃迁

  3、知识内容的整体数量剧增

  4、知识的独立性大

  二、改变观念。

  初中阶段,特别是初中三年级,通过大量的练习,可使学生的成绩有明显的提高,这是因为初中数学知识相对比较浅显,更易于掌握,通过反复练习,提高了熟练程度,即可提高成绩,既使是这样,对有些问题理解得不够深刻甚至是不理解的。例如在初中问|a|=2时,a等于什么,在中考中错的人极少,然而进入高中后,老师问,如|a|=2时,那么a等于什么,既使是重点学校的学生也会有一些同学毫不思

  索地回答:a=2、就是以说明了这个问题。又如,前几年北京四中高一年级的一个同学在高一上学期期中考试以后,曾向老师提出“抗议”说:“你们平时的作业也不多,测验也很少,我不会学”,这也正说明了改变观念的重要性。

  三、做好复习和总结工作。

  1、做好及时的复习。课完课的当天,必须做好当天的复习。复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题:分析问题的思路、方法等(也可边想边在草稿本上写一写)尽量想得完整些。然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,就使得当天上课内容巩固下来,同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。

  2、做好单元复习。

  学习一个单元后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对容完善,而后应做好单元小节。

  3、做好单元小结。

  单元小结内容应包括以下部分。

  (1)本单元(章)的知识网络;

  (2)本章的基本思想与方法(应以典型例题形式将其表达出来);

  4:关于做练习题量的问题有不少同学把提高数学成绩的希望寄托在大量做题上。

  我认为这是不妥当的,我认为,“不要以做题多少论英雄”,重要的不在做题多,而在于做题的效益要高。做题的目的.在于检查学生学的知识,方法是否掌握得很好。如果学生掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了学生的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。而对于中档题,尢其要讲究做题的效益,即做题后有多大收获,这就需要在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过,把它们联系起来,学生就会得到更多的经验和教训,更重要的是养成善于思考的好习惯,这将大大有利于学生今后的学习。

  五、教师有意识培养学生的各方面能力

  数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,开展一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。平时注意让学生观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养学生这些能力,会精心设计“智力课”和“智力问题”比如对习题的解答时的一题多类,应用模型、电脑等多媒体教学等,都是为学生数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到学生各方面能力的全面发展。

  六、抓好基础。

  古人云:良好的开端是成功的一半,一年之际在于春,一日之计在于晨。由于高中新课改,课本以及内容的编排顺序与都原教材发生了变化,删去和增加了一些内容,但大部分内容是不变的,只是整体难度略有下降,高一要学四个模块的内容,分别是必修1,2,3,4,上学期学必修1,4,内容包括集合,函数,三角函数,向量,三角恒等变换。下学期必修2,3内容包括立体几何初步,解析几何初步,数列,解三角形,不等式。其他城区有的是按编排顺序学的。高中生三年的成长与发展,不论是数学知识的获得,个性的陶冶,还是思维水平、数学能力的提高,都遵循这样一个规律:“三年发展看高一,高一关键在一(上)”,“万事开头难”,打好高一的基础至关重要。高一上学期特别是“一(上)”的前半学期,是实现从初中学习到高中学习的"转轨期",高中数学课即将开始与初中知识有联系,但比初中数学知识系统。高一数学中我们将学习函数等,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法;如:函数与方程思想、数形结合思想等,它也是高考的重点。

高中数学教学设计模板8

  学习目标

  明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决的实际问题.

  学习过程

  一、学前准备

  复习:

  1.(课本P28A13)填空:

  (1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是 ;

  (2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是 ;

  (3)5名工人要在3天中各自选择1天休息,不同方法的种数是 ;

  (4)集合A有个 元素,集合B有 个元素,从两个集合中各取1个元素,不同方法的种数是 ;

  二、新课导学

  ◆探究新知(复习教材P14~P25,找出疑惑之处)

  问题1:判断下列问题哪个是排列问题,哪个是组合问题:

  (1)从4个风景点中选出2个安排游览,有多少种不同的方法?

  (2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?

  ◆应用示例

  例1.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?

  例2.7位同学站成一排,分别求出符合下列要求的不同排法的种数.

  (1) 甲站在中间;

  (2)甲、乙必须相邻;

  (3)甲在乙的左边(但不一定相邻);

  (4)甲、乙必须相邻,且丙不能站在排头和排尾;

  (5)甲、乙、丙相邻;

  (6)甲、乙不相邻;

  (7)甲、乙、丙两两不相邻。

  ◆反馈练习

  1. (课本P40A4)某学生邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?

  2.5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列

  3.马路上有12盏灯,为了节约用电,可以熄灭其中3盏灯,但两端的.灯不能熄灭,也不能熄灭相邻的两盏灯,那么熄灯方法共有______种.

  当堂检测

  1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为( )

  A.42 B.30 C.20 D.12

  2.(课本P40A7)书架上有4本不同的数学书,5本不同的物理书,3本不同的化学书,全部排在同一层,如果不使同类的书分开,一共有多少种排法?

  课后作业

  1.(课本P41B2)用数字0,1,2,3,4,5组成没有重复数字的数,问:(1)能够组成多少个六位奇数?(2)能够组成多少个大于201345的正整数?

  2.(课本P41B4)某种产品的加工需要经过5道工序,问:(1)如果其中某一工序不能放在最后,有多少种排列加工顺序的方法?(2)如果其中两道工序既不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?

高中数学教学设计模板9

  一、教学目标

  1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。

  2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。

  3、通过对四种命题之间关系的学习,培养学生逻辑推理能力

  4、初步培养学生反证法的数学思维。

  二、教学分析

  重点:四种命题;难点:四种命题的关系

  1、本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。

  2、教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题。

  3、“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。

  三、教学手段和方法(演示教学法和循序渐进导入法)

  1、以故事形式入题

  2、多媒体演示

  四、教学过程

  (一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的'走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!

  设计意图:创设情景,激发学生学习兴趣

  (二)复习提问:

  1.命题“同位角相等,两直线平行”的条件与结论各是什么?

  2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?

  3.原命题真,逆命题一定真吗?

  “同位角相等,两直线平行”这个原命题真,逆命题也真。但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真。

  学生活动:

  口答:(1)若同位角相等,则两直线平行;

  (2)若一个四边形是正方形,则它的四条边相等。

  设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础。

  (三)新课讲解:

  1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。

  2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。

  3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。

  (四)组织讨论:

  让学生归纳什么是否命题,什么是逆否命题。

  (五)课堂探究:“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?

  (六)课堂小结:

  1、一般地,用p和q分别表示原命题的条件和结论,用¬p和¬q分别表示p和q否定时,四种命题的形式就是:

  原命题若p则q;

  逆命题若q则p;(交换原命题的条件和结论)

  否命题,若¬p则¬q;(同时否定原命题的条件和结论)

  逆否命题若¬q则¬p。(交换原命题的条件和结论,并且同时否定)

  2、四种命题的关系

  (1)、原命题为真,它的逆命题不一定为真。

  (2)、原命题为真,它的否命题不一定为真。

  (3)、原命题为真,它的逆否命题一定为真。

  (七)回扣引入

  分析引入中的笑话,先讨论,后总结:现在我们来分析一下主人说的四句话:

  第一句:“该来的没来”其逆否命题是“不该来的来了”,甲认为自己是不该来的,所以甲走了。

  第二句:“不该走的走了”,其逆否命题为“该走的没走”,乙认为自己该走,所以乙也走了。

  第三句:“俺说的不是你(指乙)”其值为真其非命题:“俺说的是你”为假,则说的是他(指丙)为真。所以,丙认为说的是自己,所以丙也走了。

  五、作业

  1.设原命题是“若断它们的真假,则”,写出它的逆命题、否命题与逆否命题,并分别判。

  2.设原命题是“当时,若,则”,写出它的逆命题、否定命与逆否命题,并分别判断它们的真假。

【高中数学教学设计】相关文章:

高中数学教学设计范文07-22

高中数学单元教学设计06-19

高中数学教学设计优秀10-23

高中数学优秀教学设计08-05

高中数学教学设计 15篇02-27

高中数学大单元教学设计04-15

高中数学教学设计15篇12-05

高中数学单元教学设计(合集)05-17

高中数学教学设计(通用20篇)08-06

高中数学教学设计(通用22篇)05-19