数学手抄报

时间:2022-07-06 14:08:30 手抄报 我要投稿

数学手抄报

数学已经不是原来人们头脑中仅仅是数和形,仅仅是陈景润的概念了。随着计算机的发明和技术迅速提高,数学学科也进入了新的黄金时代。数学包括三个方面,模式、结构和模拟现实世界。它不光是理论,也是能力,是文化,是素质。

数学手抄报

数学可分为五大学科:纯粹(基础)数学、应用数学、计算数学、运筹与控制、概率论与数理统计。应用数学则以以上数学为综合理论基础,可分为:价值数学、运筹学、数理统计学、系统科学、决策论等。目前又发展出混沌、小波变换、分形几何等。

人类逐步有了数的概念,由自然数开始。由于人有十个手指,所以多数民族建立了十进位制的自然数表示方法。二十个一组的太多太大,不能一目了然,还要用上脚趾,五个一组又太少,使组数太多,十个一组是比较会让人喜爱的折衷方法。有古巴比仑记数法、希腊记数法、罗马记数法、中国记数法,发展进步了5000年后,印度人第一次发明了零,零加自然数称为为整数,传入伊斯兰世界形成目前通用的阿拉伯数字。计算机的出现又需要二进位制,就是近几十年的事了。

算术运算起步只需要有加法的概念,乘是多次加的简化运算,减是加的逆运算,除是乘的逆运算,这就是四则运算。除法很快导致了分数的出现,以十、百等为分母的除法,简化表达就是小数和循环小数。不是拥有钱而是欠人的钱如何表示,这就出现了负数,以上这些数放在一起,就是有理数,可以表示在一个数轴上。

人们曾经很长时间以为数轴上的数都是有理数,后来有人发现,正方形的边是1,它的对角线长度就无法用有理数表示,用园规在数轴上找到那个对应点就是无理数的点,这是第一次数学危机。1761年德国物理学家和数学家兰伯卢格严格证明了π也是一个无理数,这样把无理数包入之后,有理数与无理数统称为实数,数轴也称之为实数轴。后来人们发现,如果在实数轴上随机的抽取,得到有理数的概率几乎是零,得到无理数的概率几乎是1,无理数比有理数多得多。为什么会如此,因为我们生活的这个客观世界,本来就是无理的多过有理的。为了解决负数的开平方是什么,16世纪出了虚数i,虚轴与实轴垂直交叉形成一个复平面,数也发展成为由虚部和实部组成的复数。数的概念会不会继续发展,我们试目以待。

对实数的运算进入代数学阶段,有“加、减、乘、除、乘方、开方、指数、对数”八则,用符号代表数,列出方程,求解方程成了比算术更有力的武器。这个时期称为初等数学,从5世纪一直到17世纪,大约持续了一千多年。初等数学是常数的数学。对一组数群体性质的研究就导致线性代数。

以上是研究数的,在研究形方面也平行的发展着,古希腊的欧几里得用公理化的方法,构建了几何学是最辉煌的成就。二千多年前的平面几何成就已经与目前中学几何教科书几乎一样了。他们还了解了众多曲线的性质,在计算复杂图形的面积时,接近了高等数学。还初步了解到三角函数的值。在几何学方面,后来进一步发展出非欧几何,包括罗巴切夫几何、黎曼几何、图论和拓扑学等分支。直到17世纪,笛卡尔的工作终于把平行发展的代数与几何联系起来,除建立了平面坐标系之外,还完善了目前通行的符号运算系统。

变化着的量以及它们间的依赖关系,产生了变量与函数的概念,研究函数的领域叫数学分析,其主要内容是微积分,牛顿由物理力学推动了微积分的产生,莱布尼兹从数学中求曲线多边形的面积出发推动了微积分的发现,两人的工作殊途同归,目前的微积分符号的记法,都是莱布尼兹最先采用的。他们都运用了极限的概念和无穷小的分析方法。

有了微积分,一系列分支出现了,如级数理论、微分方程、偏微分方程、微分几何等等。级数是无穷项数列的求和问题,微分方程是另一类方程,它们的解不是数而是函数,多元的情况下就出现了偏微分概念和偏微分方程。微分几何是关于曲线和曲面的一般理论,将实数分析的方法推广到复数域中就产生了复变函数论。

前面涉及的数量,无论是常量还是变量都是确定的量,但自然界中存在大量的随机现象,其中存在很多不确定的、不可预测的量、是具有偶然性的量,这就由赌博中产生了概率论及其统计学等相关分枝。

前面涉及的数量,无论是常量还是变量都是“准确”的量,但自然界中存在大量的不准确现象,人为地准确化只能使我们对客观世界的描述变得不准确。“乏晰数学”Fuzzy就是以这种思想观点和方法研究问题的数学。


【数学手抄报】相关文章:

初中数学手抄报08-04

关于数学的手抄报07-02

数学内容手抄报06-07

数学下册手抄报06-08

数学手抄报黑白06-11

漂亮数学手抄报06-11

数学手抄报内容资料07-02

数学手抄报的精选图片大全05-22

关于数学的手抄报精美07-04