抽屉原理教案

时间:2022-07-09 04:07:49 教师 我要投稿
  • 相关推荐

抽屉原理教案

抽屉原理教案内容如下:欢迎阅读哈!

抽屉原理教案

(一)炫我两分钟

主持:大家好,今天的炫我两分钟由我来主持,今天呢我来给大家变个魔术,这就是我要用的道具:扑克牌,(举起来给大家看)谁能大声的告诉我一副扑克牌有多少张呢?

生:54张。

主持人:声音洪亮的同学一会儿我要请你来和我共同完成这个魔术哦。现在我把大王小王这两张牌去掉,(扣在桌子上)现在剩下多少张了呢?

生:52张。

主持人:我要请一个同学帮我洗一下牌,打乱他们的顺序,谁愿意。(请最近的一个同学洗牌)。好了,现在这副牌被彻底的打乱了顺序,接下来我要请5名同学到台上来,(快速确定人选)谁愿意参与?我这魔术成不成功全仰仗你们了,现在你们每人抽取一张牌,偷偷的看一眼,千万不要告诉别人你抽到了什么?记住规则了吗?(让5名同学每人抽出一张牌),好,除了你们自己,谁都不知道你们抽到了什么?但我敢肯定地说:“你们抽到的这5张扑克牌至少有2张是同一种花色的,(大屏幕显示)大家相信我的判断吗?见证奇迹的时候到了,请你们一一亮出手中的牌,大家赶快帮我找一下是不是至少有2张牌是同一花色的?

生:是。

如果有学生说:你猜的不对,有3张牌都是红桃。

主持:我说的是至少有2张牌,那一定是2张牌吗?

生:不一定,至少有2张,可能是2张,也可能是3张、还可能是4张,还可能是5张都是同一花色的。

主持:解释的非常好,我说至少有2张牌是同一花色的,但我没规定到底是哪一种花色,可能是红桃、也可能是黑桃、可能是方片、也可能是梅花。不管是哪一张花色,总有一个花色会出现至少2张相同的。现在有( )张都是( )花色,说明我的判断是正确的。

我的表演到此结束,掌声在哪里?谢谢大家。

师:溪纯的魔术变得真不错,有好些同学都在羡慕他的料事如神,怎么一猜就中了呢?其实这个魔术不仅他会变,你也会变,秘密在哪呢?学完这节课之后大家就会明白了,这节课我们就共同来探究《抽屉原理》。

师:面对这个课题,你有什么疑问呢?

生:什么是抽屉原理?

生:抽屉原理与刚才的魔术有什么关系?

生:学习抽屉原理有什么用?

师:带着这些问题进入我们今天的课堂。

(设计意图:以魔术的形式激发学生的学习兴趣,巧妙的向学生初步渗透了“不管怎样”、“总有一个”“至少”等概念。使学生初步感知“抽屉原理”的基本思想,同时也引发了数学思考。)

(二)尝试小研究

课前的时候,老师让大家进行了尝试研究。在小组交流之前,快速浏览老师给出的小组交流要求。谁能大声的给大家读出来。

好,开始组内交流

《抽屉原理》课前尝试小研究

把3本书放进2个抽屉中,可以怎样放?找出所有不同的摆放情况。可以用手中的笔代替书摆一摆,也可以画一画。

1、我找到的摆放情况:

我找到了( )种不同的摆放情况。

3、观察第一种摆放情况,哪个抽屉里放书本书最多,用彩笔圈出来。依次圈出其它摆放情况中放书最多的那个抽屉。

4、仔细观察每种摆放情况中放书最多的那个抽屉。

我的发现:放书最多的抽屉至少放进了( )本书。

《抽屉原理》课上尝试小研究

我们小组研究的是把( )本书放进( )个抽屉中。

我们组的方法是:

我们组的结论是:总有一个抽屉至少放( )本书。

(设计意图:通过自主性、开放性的操作活动让学生体会假设法的简洁性。)

(三)、小组合作探究。

师:希望你们在交流的时候,牢记这些注意事项,并落实到你们的行动中,好开始组内交流。

组内交流尝试小研究。

出示合作指南:1、组长组织本组成员有序进行交流。

2、认真倾听其他组员的发言,如有不同意见,敢于发表自己的想法。

3、组长带领大家重点讨论有不同意见的题目,并达成一致的意见。

4、再次确认发言顺序,准备全班交流。【设计意图:培养孩子认真倾听的好习惯,增强组内成员之间的互惠互赖,让每一个人都有所进步。】

(四)、班级展示。

师:老师刚才发现某某小组在今天的交流中表现得非常好,所有成员能够做到认真倾听,而且能够及时补充自己的不同意见,为他们小组加上1分。今天哪个小组愿意把你们的交流的结果与大家一起分享呢?

全班交流

师:通过我们小组的共同努力,出色的完成了本次的汇报任务,奖励你们小组一颗团结合作星。

(五)、教师点拨提升

1、运用枚举法探究原理

生1:我找到的摆放情况是第一种:第一个抽屉里放2本书,第二个抽屉里放1本书。第二种是第一个抽屉里放1本书,第二个抽屉里放2本书。大家同意我的意见吗?

生2:我认为除了这2种情况之外,还可以是第一个抽屉里放3本书,第二个抽屉里不放书。或者第一个抽屉里不放书,第2个抽屉里放3本书。大家同意我的意见吗?(放在展台上)

生3:把3本书放进2个抽屉中,我认为是每个抽屉里都必须放有书。

生2:把3本书放进2个抽屉中,只要是保证把3本书都放进抽屉里就可以了。有个抽屉可以是0本书。

师:确实如某某所说,只要确保把书都放进去就可以了,某个抽屉是允许不放书的。我们来看一下这是某某同学总结的摆放情况,你们认为这样写好不好?好在哪?

生:特别清楚,简单。

师:老师还发现了某某同学这样的记录方式,你能看得懂吗?这就是数学符号的优点所在:简洁,记录方便,一目了然,希望同学们能够学到这种记录的好方法。好,组长继续交流下一题。

生1:我们小组找到了四种不同的摆放方法。

生2:老师,我有不同意见,我能用两句话来概括这四种情况。一种是:一个抽屉放2本,另一个抽屉放1本。另一种是:一个抽屉放3本,另一个抽屉不放。

师:大家认为他说的有道理吗?当我们不考虑抽屉的顺序,1、2种可以合成一种情况:一个抽屉放2本,一个抽屉放1本,3、4种也可以合成一种情况就是一个抽屉放3本,另一个抽屉放0本。

师:好,继续交流。

生:第一种摆放情况我圈出了2本书,第二种也圈出了2本书,第3、4种我圈出了3本书。

生:放书最多的那个抽屉至少放进了2本书。

生:至少是什么意思?

生:至少2本,就是最少2本,可以比2本多。

生:我们小组汇报完毕,哪个小组有补充、评价或疑问?

生:你们小组声音洪亮,很好。

生:今天某某表现很好,进步很大。

师:通过我们小组的共同努力,出色的完成了本次的汇报任务,给你们小组加上2分。

师:刚才我们研究了把3本书放进2个抽屉中,我们列举出了所有的摆放情况,老师用表格的形式进行了总结,我们一起来看大屏幕,这种一一列举的方法在数学上成为枚举法(点击课件)。现在我们仔细观察各种摆放情况,我们需要关注的是那些抽屉呢?

生:关注每种放法中放书最多的那个抽屉。

师:有放3本的,有放2本的,还有装得更少的情况吗?所以我们得到至少放2本书。放书最多的那个抽屉一定是第一个抽屉吗?

生:不一定,还可能是第二个抽屉。

师:看来我们关注的是放书最多的抽屉至少放进了几本书,无论放哪个抽屉都是可以的。那如果现在有4本书要放进3个抽屉中,无论怎样放,总有一个抽屉至少放进了( )本数呢,赶快开动脑筋,仔细想一想吧。

师:有些同学在这么短的一个时间内每能一下子得到结论,没关系,你可以把你想到的摆放情况说出来,谁来说?

生:我想到的是第一个抽屉放4本书,第二个抽屉和第三个抽屉1本都不放。

师:这种摆法方法我们给记作(4、0、0),刚才说到了我们要关注放的最多的那个抽屉,这4本书一定放在第一个抽屉吗?还可以怎样放?

生:(0、0、4)(0、4、0)。

师:找的真有顺序,非常好,还有其它放法吗?直接把你的方法有这种形式表现出来。

生:(1、2、1),还可以是(1、1、2)(2、1、1)

师:真不错,自己就关注了放书最多的那个抽屉。继续,还有其它放法吗?

生:(1、3、0)(1、0、3)(3、1、0)。

师:我们来总结一下看看每种放法中放的最多的那个抽屉里放了几本书。

生:4本、3本、2本。

师:那现在你知道无论怎样放,总有一个抽屉至少放进了几本书了吗?

生:总有一个抽屉至少放进了2本书。

(设计意图:怎样帮助学生理解抽屉原理模型中的“不管怎么放”、“总有一个”、“至少”等词语表达的意思呢?在上述教学中,先让学生动手操作、画图,找出“把3本书放进2个抽屉里”的所有分放方法,目的是让学生真正体会并得到所有的分放方法。接着,通过教师的追问,引导学生体会、理解“不管怎么放”、“总有一个”、“至少”的含义,为自主探究解决问题扫清了障碍。)

2、运用假设法探究原理

师:除了这种一一列举的方法之外,谁还有不同的方法。如果书和抽屉的数量在多一些,你们感觉这种一一列举的方法怎么样?

生:太麻烦。

师:我们研究的是在每种摆放情况中放书最多的那个抽屉里至少放进了几本书。怎样能使这个放得最多的抽屉里尽可能的少放?先独立思考,有了想法后,对学的2个人可以先交流一下。

生:平均着放。

师:把你的想法说的具体些。

生:先把书平均着放,每个抽屉里放一本,然后剩下的1本再放进其中一个抽屉里。

(师根据学生回答演示摆放的过程)

师:为什么要先平均分?

生3:因为这样分,只分一次就能确定总有一个抽屉至少有几本书了。

师:好!先平均分,每个抽屉里放1本,余下1本,不管放在哪个抽屉里,一定会出现总有一个抽屉里至少有——

生:2本书。

师:你们感觉这种方法怎么样。

生:好。

师:好在哪?

生:快。

师:这个办法真是妙,只分一次就能确定总有一个抽屉至少有几本书了。

谁能用除法算式表示出刚才的思考过程呢?

生:4÷3=1(本)……1(本) 1+1=2(师板书:)

师:你能解释算式中每个数的意义吗?

生:4是书的本数,3是抽屉数,把4本数平均放入3个抽屉,每个抽屉中是1本,即商是1,还剩下1本,就可以随意放进任何一个抽屉,因此必定有一个抽屉至少有2本书。

师:也就是说被除数是我们所要分的物体的个数,除数是抽屉的个数。上面是4本书放入3个抽屉,如果是7本书放进3个抽屉中,又将得到怎样的结果呢?你能用最快的方法告诉大家吗?

生:7÷3=2(本)……1(本),每个抽屉至少放进了2+1=3本书。

师:我们来看一下大屏幕,课件演示分的过程。

(反思:在交流时,抓住两种方法的本质和关键加以引导,并进行归纳提炼,使学生初步感受和体验枚举法与假设法的不同。将假设法最核心的思路用“有余数除法”形式表示出来,将思维过程与数学符号联系起来,体现了数学的简洁美,并为后面发现规律埋下伏笔。)

师:仔细观察这2个算式,你发现了什么?

预设:用书的本数÷抽屉数=商……余数,至少数等于商加1,至少数等于商加余数。

师:我们通过把4本数放进3个抽屉,和把7本数放进3个抽屉得到了至少数等于商加余数这个结论,那这个结论是否是否适用于所有的情况呢?如果用不同的书的数量和抽屉数又将得到怎样的结论呢?

请看老师给出的小组探究要求:小组商量确定好书的本数,抽屉的个数(书的本数要比抽屉的个数多,为了研究方便,要化繁为简,尽量选择小于20的数字进行研究,而且书的本数和抽屉书不成倍数关系)记录能最快得出结论的一种放法;总结得出的结论。

完成课上尝试小研究。

小组选取代表进行汇报:教师进行板书。

预设:对于余数不为1的情况可能产生分歧:比如5÷3=1本……2(本),有的同学可能认为总有一个抽屉至少放1+1=2本书,有的同学可能认为总有一个抽屉至少放1+2=3本书,教师要组织学生进行讨论。

生1:“总有一个抽屉里的至少有3本”只要用5÷3=1(本)……2(本),用“商+ 2”就可以了。

生3:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。

师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢?

生:用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。

师:看来,真理确实是越辩越明!同学们的这一发现,称为“抽屉原理”。也就是把m个物体任意放进n个空抽屉里(m>n,n是非0的自然数),如果m÷n=b……c,那么一定有一个抽屉中至少放进了多少个?

生:至少放进了“b+1”个物体。

师:课前的时候有人提问:什么是抽屉原理,现在你知道了吗?你知道抽屉原理最先是由谁发明的吗?我们来看大屏幕。“抽屉原理”最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。(课件呈现资料)

(反思:余数不为“1”时,余下的物体怎么分是学生学习的难点。教学中,给予学生充足的思考时间和探索空间,让学生充分发表见解,使学生从本质上理解了“抽屉原理”,有效地突破了难点。通过背景知识的介绍,激发学生热爱数学的情感和勇于探究的精神。)

(六)巩固练习。

1、解释炫我2分钟中的魔术现象。

师:有人在课前的时候提到“抽屉原理”与溪纯变的魔术有什么关系呢?你现在能解释“为什么抽到的5张牌中至少有2张是同一花色的”吗?这道题中又是把谁看成了书,谁看成了抽屉呢?有几个抽屉呢?

生:把5张牌看成书,把4种花色看成4个抽屉,5÷4=1……1,所以至少有2张牌是同一花色的。

拓展:一副扑克牌,拿出大小王之后,至少抽出多少张才能保证2张牌大小相同。

师:原来这么神秘的魔术应用的就是一个数学原理:抽屉原理。那抽屉原理还有哪些用处呢?

2、43名师生中至少有几人在同一月出生。

师:我们班一共有43名同学,至少有几人在同一个月出生呢?

生:43÷12=3……7,至少有4人同一个月生日。

师:在这道题中又是把谁看成了书,谁看成了抽屉呢?有几个抽屉呢?

生:把43个人看成了书,12月看成了12个抽屉。

师:我们又一次体会到了抽屉原理的应用,接下来老师要加大难度了,敢迎接挑战吗?

3、一个袋子中放着红黄蓝绿4中颜色的球各若干个,至少摸出几个才能保证有2个同一种颜色的球?

师:先猜一猜。

生试着猜测。

师:这道题属于抽屉原理吗?求得又是抽屉原理的哪一项呢?在这道题中又是把谁看成了书,谁看成了抽屉呢?有几个抽屉呢?

生:4种颜色的球是4个抽屉,求的是( )÷4=1……1

师:说的真好,看来这类摸球问题也属于抽屉原理,你们可真是火眼金睛呀。

(七)总结收获。

通过这节课的学习,你有什么新的收获?

师:以上就是本节课的内容,同学这节课的学习,你们有什么新的收获呢?

这节课我们学习了抽屉原理,知道了可以用一一列举的方法,也可以用平均分的方法,这种方法更加的简捷、快速,我们还体会到了生活中很多现象可以用抽屉原理来解释,课下的时候继续思考生活中哪些现象可以用抽屉原理来解释,写在你的数学日记中。


【抽屉原理教案】相关文章:

抽屉原理教学设计02-01

《抽屉原理》教学设计02-22

抽屉原理评课稿07-28

抽屉原理优秀教学设计03-05

《抽屉原理》评课稿04-08

《抽屉原理》教学设计14篇03-05

《抽屉原理》教学设计(14篇)03-05

《抽屉原理》教学设计15篇02-22

《抽屉原理》教学设计(15篇)02-22

抽屉原理教学设计15篇03-12