加法交换律和结合律教案

时间:2024-06-06 21:10:24 品才网 我要投稿

加法交换律和结合律教案集锦[16篇]

  作为一名老师,有必要进行细致的教案准备工作,教案是教学活动的总的组织纲领和行动方案。那么教案应该怎么写才合适呢?下面是小编收集整理的加法交换律和结合律教案,仅供参考,大家一起来看看吧。

加法交换律和结合律教案集锦[16篇]

加法交换律和结合律教案 篇1

  教学目标

  1、让学生在经历探索加法交换律和加法结合律的过程中,理解并掌握加法交换律和加法结合律,初步感受到应用加法运算律可以使一些计算简便。

  2、在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力 ,培养学生的符号感。

  3、让学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。

  教学重点

  理解加法的'运算律。

  教学难点

  概括加法的运算律,尝试用字母表示。

  教学过程

  一、教师适当引导,进入新知。

  二、教学加法交换律。

  1、课件出示:这是同学们课外活动的情况。谁能来解决这个问题?根据学生回答,联系题意讲解,并板书:28+17=45(人),问:还可能怎样想:17+28=45(人)。

  板书算式。

  2、比较这两道算式有什么不同?

  3、得数相同的算式我们可以用等号把它们连成等式。

  4、举例:你能再说出几个这样的等式吗?自己写一写。学生说,老师相机板书等式,并追问:介绍一下你是怎么写的?核实是否相等。

  5、概括规律:仔细观察,有什么规律?根据学生回答,相机引导发现规律。

  6、用自己喜欢的方式表示这个规律?可适当提示:用符号、文字、字母

  学生思考,充分发表自己意见,教师给予肯定。

  7、数学上,我们一般用a、b表示两个加数,可以写成:a+b=b+a.

  老师小结:

  引出:加法交换律(板书)

  8、小练习:填数

  三、教学加法结合律。

  1、过渡:刚才我们一起动脑,有了很多发现,大家真不简单。现在我们再来解决一个问题,看看会有哪些收获?课件出示

  2、列式解答,利用题意追问算式含义,并相机加括号表示先算。还可能先算什么?说算式含义

  3、比较这两个算式:有什么不同?什么相同?得数为什么相同?我们可以用等号连成等式。

  4、出示书上题目,说一说,算一算。

  5、概括规律:仔细观察,你有什么发现?学生回答,教师引导发现规律。

  6、你能不能再举几个例子?学生举例。

  7、教师小结,引出:加法结合律(板书)。如果用a、b、c分别表示这三个加数,加法结合律可以表示成?

  8、小练习:填数。

  四、总结新知,组织练习。

  1、刚才我们学习了加法交换律和加法结合律,它们都是运用在加法中的规律。师总结。

  2、课后练习:

  (1)下面等式各应用了什么运算律?学生说一说,对第三道重点分析,引出加法运算律有作用。

  (2)比较体会运算律的作用,知道凑整百。

  (3)凑整百小练习。

加法交换律和结合律教案 篇2

  教学目标

  1、知识与技能:结合具体的情境,引导学生认识和理解结合律的含义。

  2、过程与方法:能用字母式子表示加法结合律,初步学会应用加法结合律进行一些简便运算。

  3、情感态度与价值观:

  ①体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。

  ②培养学生观察,比较,抽象,概括的初步思维能力。

  教学重点

  认识和理解加法结合律的含义。

  教学难点

  引导学生抽象,概括加法结合律。

  教学用具

  多媒体课件。

  教学过程

  一、自主学习

  (一)出示自学提纲

  自学提纲(P29页例2并完成自学提纲问题,将不会的问题做标注)

  1、根据例2情境图中信息列出算式。

  2、用你喜欢的方法尝试计算

  3、同桌交流自己的算法

  4、教师板书出学生的`算式及答案

  88+104+96

  =88+(104+96)

  =192+96 =88+200

  =288 =288

  5、对比上面的两道算式,你发现了什么?用自己的话说一说。

  (二)学生自学(学生对照自学提纲,自学教材P29页例2,并完成自学提纲问题,将不会的.问题做标注)

  (学生自学,教师在不干扰学生的前提下巡回指导,发现共性问题,以掌握学生学情)

  (三)自学检测

  1、填空

  387+425=( )+ 387 525+( )=137+ 525

  300+600=( )+( ) ( )+65=( )+35

  2、连线

  56+68 150+(25+75)

  150+25+75 50+B

  B+50 68+56

  A+B+100 A+(B+100 )

  三、合作探究

  (一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解。)

  (引导学生正确地计算,鼓励学生分工合作,探索交流,教师巡回辅导,发现、收集学生存在的问题)

  (二)师生互探

  1、解答各小组自学中遇到不会的问题。

  (1)让学生提出不会的问题,并让学生解决。

  (2)教师引导学生解决学生还遗留的问题。

  (3)如何用字母表示加法交换律和结合律?

  (4)用字母表示这些运算定律有什么优点?

  2、教师有针对性地请不同做法的同学汇报自己的解题思路与方法。

  四、达标训练(1--3题必做,4题选做,5题思考题)

  1、根据加法结合律填空题。

  (1)78+25+22 =78 +( )+25

  (2)376+175+25=376 +( + )

  2、连线。

  147+(72+28) A+(B+100 )

  A+B+100 147+72+28

  3、简便计算下面各题。

  52+27+73 285+15+77+23

  课堂小结:谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)

  五、堂清检测

  (一)出示检测题

  1、根椐加法的运算定律填空

  (1)450+320=( )+ 450 65+95=95+( )

  (2)( )+ 100 =100+150 250+( )=125+250

  (3)78+25+22 =(78 + )+( )

  (4)495+125+75=495 +( + )

  2、下面的哪些算式符合加法结合律,哪些算式符合加法交换律。

  (1)A + ( 30+9 )=A+ 30+9

  (2)15+ ( 7+B )= (15 + 7 )+B

  (3)10 + 20 + 30 + 40 =10 + (20 + 30) + 40

  3、连线。

  87+22+78 (79+83)+17

  498+125+75 498+(125+75)

  (138+136)+162 87+(22+78 )

  79+(83+17) 138+136+162

  4、简便计算。

  98+72+28 215+85+73+27

  (二)堂清反馈:

  作业布置

加法交换律和结合律教案 篇3

  教学内容:

  苏教版小学数学第七册第七单元运算律第56――58页例题,“想想做做”的第1――5题。

  教学目标:

  1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会运用加法交换律进行加法验算,初步感受到应用加法交换律和结合律可以使一些计算简便。

  2.在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。

  3.让学生在数学学习过程中获得探究的乐趣、成功的喜悦,进一步增强对数学学习的兴趣和信心,初步形成独立思考、合作交流的意识和习惯。

  教学重点:

  发现规律,理解和掌握运算律。

  教学难点:

  概括运算律并用字母表示。

  教学过程:

  一、师生合作,探索加法交换律

  1.创设情境,解决问题

  (1)谈话:随着学校开展的“植根童趣,放飞童心”的活动以来,课间同学们的活动变得更加丰富多彩了。(出示挂图)

  提问:从这张图片中,你获得了哪些数学信息?

  (2)你能根据这些信息提出一些用加法计算的`问题吗?

  指名口答。

  (3)今天这节课,我们就一起来研究其中的这两个问题。

  (出示问题)

  (4)先解决第一个问题:参加跳绳的一共有多少人?

  ①应怎样列式计算?

  指名回答,教师板书:28+17=45(人)

  ②追问:还可以写成什么?

  指名回答,教师板书:17+28=45(人)

  2.观察、比较、发现规律

  (1)这两道算式都是求什么的人数?结果都是多少?

  (2)你能用一个符号把它们连接起来吗?

  板书:28+17=17+28

  (3)仔细地观察这个算式,在等号的两边,什么变了?什么不变?你有什么发现?

  同桌交流

  (4)你们能够自己模仿写出几个这样的算式吗?试试看。

  追问:这样的算式能写几个?

  指名回答,教师板书。

  (5)你能用自己喜欢的方法把我们发现的规律简单明了地表示出来吗?可以用符号、字母、文字等。

  学生试着写一写。

  指名回答,教师板书。

  (6)谈话:刚才同学们能用自己喜欢的方式表示了我们发现的规律,这些规律叫运算律。但是自己创造的符号只有自己明白,还要学习数学界公认的表示方法,那就是用字母a、b分别表示两个加数,我们发现的规律就可以写成a+b=b+a,这个规律我们给它起个名字叫加法交换律。

  (7)谁来说说加法交换律用字母怎样表示?用语言怎样表达?

  齐读。

  (8)其实加法交换律我们早就会用了,想想看,什么时候我们用过?

  指出:在验算加法时用的就是加法交换律。

  3..练习:

  96+35=35+()

  204+57=()+204

  a+45=45+()

  二、学法迁移,探索加法结合律

  1.解答例题,发现规律

  (1)刚才通过解决第一个问题,我们得到了加法交换律,现在我们再来研究第二个问题,看看有没有新的发现?

  (2)齐读问题。你会列式解决这个问题吗?

  你打算先求什么?再求什么?

  学生练习,教师巡视。

  学生汇报,教师板书:(28+17)+23=68(人)

  28+(17+23)=68(人)

  (3)比较一下这两道算式,他们有什么相同点和不同点?

  (4)这两道算式结果相同,我们可把它写成怎样的算式?

  2.板书(28+17)+23=28+(17+23)

  (5)练习:

  下面的○里能填上等号吗?

  (45+25)+23○45+(25+23)

  (36+18)+22○36+(18+22)

  (6)观察这三个等式,每组的两个算式有什么相同的地方?有什么不同的地方?你从这些等式中能发现怎样的规律,和你的同桌交流一下。

  和不变,这就是我们今天所学的第二个运算律――加法结合律。

  3.练习

  (45+36)+64=45+(□+□)

  560+(140+70)=(560+140)+□

  a+(27+b)=(□+□)+b

  三、组织练习

  1.第58页想想做做第1题。

  仔细观察,同桌交流后汇报。

  重点讨论第四个等式,引导学生发现这里同时运用了两种加法运算律。

  2.想想做做第3题。

  学生计算第1小题,并用加法交换律验算,请学生板演。

  评讲,让学生体会加法交换律的价值。

  3.想想做做第4题

  (1)下面我们来比一比谁做得对又快。

  男生计算每组题中的第1小题,女生计算每组题中的第2小题。

  (2)交换题目再来比一比。

  (3)问:如果让你来选,你愿意做哪一题?为什么?

  (4)小结:因为运用了加法运算律可以使计算简便,而每组中的第2小题都运用了加法运算律,所以第2小题做得快。

  4.想想做做第5题

  (1)谈话:在做第4题时,大家觉得先把和是100的两个数加起来,下一步就容易算了,那么什么样的两个数和是100呢?下面我们来做第5题,你能很快找出哪两片树叶上数的和是100吗?

  (2)学生独立连线,同桌互相校对。

  (3)提问:什么样的两个数和是100?

  (4)小结:看来,在计算过程中,要有一双敏感的眼睛,看到数字就能很快地判断出能不能凑成整百数。

  四、回顾总结

  有个成语叫“学有所成”,请同学们说说看,这节课你学到了什么?有什么新的收获?

  五、作业:想想做做第3题剩下的题目。

  教学反思:这节课主要教学加法的交换律和结合律,创设学生熟悉的生活情境出发,让学生根据信息自由地提问,培养了学生的发散性思维,以及问题意识,同时也符合新课程“创造性地使用教材”的理念。在教学中通过对两个算式的观察比较,唤醒学生已有的知识经验,使学生感知加法交换律,组织学生写出类似的等式,帮助学生积累感性材料,丰富学生的表象,同时鼓励学生用自己最喜欢的方法总结出加法交换律和加法结合律,学生能较快的体会出这两种运算律,使学生体会到符号的简洁性和概括性,发展学生的符号感。通过几个层次的练习,使全体同学都参与到有趣的数学学习中,体会到数学的乐趣,又复习巩固了全课的内容,为以后教学应用运算律进行简便计算作好铺垫。

加法交换律和结合律教案 篇4

  教学目的:

  1.使学生理解和掌握加法结合律,并应用结合律使计算简便。

  2.培养学生观察、归纳、概括能力以及思维灵活性。

  3.对学生进行"具体问题具体分析"的辨证唯物主义的教育。

  教学重点:

  理解并掌握加法结合律。

  教学过程:

  一、情景引入

  1.同学们,暑假期间,我们学校举行军事夏令营活动,三年级一班有营员42人,二班有营员45人,三班有营员55人,请你计算一下,这三个班共有营员多少人?

  (1)全班试做,指名板演。

  (2)集体订正:42+45+55=142(人)

  2.师:这道实际应用题同学们做得都很好,老师这还有一道例题(出示例2),同学们看能不能用两种方法解答?

  [说明:从近期生活实际入手,使学生置于情景之中,便于激发学生学习兴趣,同时为学习例2连加法做好铺垫。]

  二、尝试探究构建模型

  1.出示例2。

  例2.四年级一班有48人,二班有50人,三班有49人,三个班共有多少人?(用两种方法解答)

  (1)全班试做。

  (2)指名板演。

  (3)做完的同学自己先说一说每种方法你是先算什么?再算什么?结果怎样?

  (4)师:由两种算法的结果相间,可以看出这两个算式有什么关系?这种关系可以怎样表示?(同桌相互说一说,然后指名回答)教师板书如下:(48+50)+ 49=48+(50+49)

  2.谁能编一道像例2这样的应用题,(指2至3名学生编)然后全班同学用两种方法解答。

  3.观察下面每组的两个算式,它们有什么样的关系?(投影出示)

  (12+13)+14○12+(13+14)

  (320+150)+230○320+(150+230)

  [说明:通过编题解答,使学生初步感知加法结合律,为后面归纳概括打下基础。]

  4.归纳概括加法结合律。

  (1)从黑板和投影上的算式同学们发现了什么规律?(以小组为单位说一说)

  (2)指名回答发现了什么规律。

  (3)教师准确口述规律,然后出示加法结合律内容。三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。我们把这样的规律叫做加法结合律。

  (揭示并板书课题:加法结合律)

  (4)全班整体感知加法结合律。(齐读)

  [说明:由小组到个人可以从不同的角度不同的侧面发散学生的思雄,培养学生归纳概括能力。]

  5.学习加法结合律字母公式。

  (1)自学(a+b)+c=a+(b+c)

  (2)弄清a、b、c的意思。

  6.做一做。

  根据运算定律在下面的□里填上适当的数。

  (25+68)+32=25+(□+□)

  130+(70+4)=(130+□)+□

  7.探究复习题的另一种简便算法。

  学习了加法结合律,同学们想一想:复习题怎样计算更为简便一些?

  42+45+55=42+(45+55)

  [说明:学以敢用,强化简算意识。]

  8.小结:加法结合律对于我们今后的学习很有帮助,希望同学们在理解的基础上切实掌握好。

  9.质疑:还有不明白的问题吗?

  [说明:清除练习中的`障碍与疑点,使学生真正学懂会用。]

  三、解决应用

  1.应用加法的交换律和结合律,可以使一些计算简便。

  2.学习例3.计算480+325+75

  (1)同学们观察这道题,怎样计算比较简便?

  (2)全班试做,指名板演。

  (3)集体订正,并指名说出这样算的根据。

  3.学习例4.计算325+480+75

  (1)以小组为单位讨论一下,例4怎样算比较简便?与例3有什么不同?应用了什么运算定律?

  (2)全班试做,指名板演。

  (3)集体订正,说出计算时应用了什么运算定律?

  [说明:把两道例题放在解决应用这个环节,有利于培养学生运用所学知识解决问题的能力。]

  4.问:我们在以前学习过程中有什么地方应用过加法结合律?

  5.练:(做一做)

  137+31+63怎样算比较简便?用了什么运算定律?

  6.读:阅读教材第14一15页,看看还有什么地方不清楚?

  7.结:这节课我们学习了加法结合律,并应用运算定律进行了简便运算,希望同学们在今后计算时,要根据题目特点,灵活运用运算定律,使计算简便。

  [说明:对学生进行具体问题具体分析的思想教育。]

  四、综合练习

  1.根据运算定律,在下面的□里填上适当的数。

  369+258+147=369+(□+147)

  (23+47)+56=23+(□+□)

  654+(97+a)=(654+□)+□

  [说明:巩固结合律,打好基础。]

  2.在符合加法结合律的等式后面打"√"号。

  a+(20+9)=(a+20)+9 ( )

  △+(○+b)=(△+□)+b ( )

  (10+20)+30+40=10+(20+30)+40 ( )

  3.有一天,小明爸爸对小明说:你从1数到100,小明刚数完,爸爸便说出了这 l00个数的结果是5050,你能帮小明说明为什么算得这么快吗?

  l+2+3+4+5+?+99+100=5050

  [说明:培养学生思维灵活性,防止思维定势。]

  4.用简便方法计算下面各题,说一说是怎样应用运算定律的?

  91+89+1185+41+15+59

  168+250+32135+49+65+24+11

  [说明:巩固例题,打好基础。]

  5.应用加法运算定律,你能很快算出下面两个算式的和吗?

  1+3+5+7+??+17+19=

  2+4+6+8+??+18+20=

  [说明:进一步培养学生思维灵活性创造性以及较高的抽象逻辑思维能力。]

  五、全课总结

  通过这节课的学习,你有哪些新的收获?

  《加法结合律》导学案

  【知识梳理】

  1、加法结合律:三个数相加,先把前两个数相加,再与第三个数相加;或者先把后两个数相加,再与第一个数相加,它们的和不变。字母表示:(a+b)+c=a+(b+c)

  2、减法的性质:一个数连续减去两个数,可用这个数减去两个数的和。字母表示:a-b-c=a-(b+c)

  【拓展提高】

  怎样简便怎样算?

  169-247+231-53 9+99+999+9999 567-(245-123)

加法交换律和结合律教案 篇5

  教学内容:

  苏教版小学数学四年级下册第56—57页例2,及“试一试”、“练一练”。

  教学目标:

  1、让学生经历运用加法运算律进行简便计算的探索过程,掌握其计算方法,会正确地进行简便计算。

  2、在教学过程中,培养学生思维的灵活性,培养学生初步的逻辑思维能力。

  3、让学生在学习过程中进一步体验数学与生活的联系,感受简便计算的乐趣,培养学习数学的积极情感。

  教学重点:

  理解并掌握如何运用加法运算律进行简便计算。教学难点:能灵活运用加法运算律进行简便计算和解决问题。教学准备:电子白板

  教学过程

  一、复习准备

  1、师:上节课我们学习了加法的两个运算律,谁能告诉大家用字母怎样来表示?各是什么意思?

  生1:a+b=b+a(两个数相加,交换加数的位置,和不变,这是加法交换律。)

  生2:(a+b)+c=a+(b+c)(三个数相加,可以先把前面两个数相加,也可以先把后面两个数相加,它们的和不变。)

  2、进行一个抢答小比赛:

  师:看得出大家对这两个运算律已经掌握的不错了。接下来我们来一个抢答比赛。比比谁最快说出气球上三个数的和。算好了直接站起来报得数。

  (64、19、36)

  (38、18、32)

  (75、27、63)

  出示第一组气球:64、19、36

  学生口答后提问:你怎么算的这么快的?你怎么想到先将64和36相加呢?

  明确:把能凑成整百的数先加起来,再与另一个数相加,这样比较简便(板书“简便”)。

  出示第二组气球:75、27、73

  师:怎么算的?这样算真简便。下一组。

  出示第三组气球:38、18、32

  师:这题没有两个数相加得100的,我们怎么办的?

  3、小结

  谈话:看来,要想算的`快,是有窍门的。只要找到了方法,把能凑成整十或整百的数先加起来,再与另一个数相加,这样计算就更简便。我们今天就要一起研究,如何简便计算。(补全课题:简便计算)

  二、用加法运算律进行简便计算

  1、教学例题。

  出示书P57的例题图。

  师:会跳绳吗?从图中你了解到哪些数学信息?

  能提出用加法计算的问题吗?会列式计算吗?

  先让学生独立列式计算。教师巡视,指名板演。

  交流反馈:这两位同学的答案对吗?他们分别是怎么算的

  框出29+46+54=29+(46+54)

  提问:这两个式子为什么相等?这两种方法,哪种方法更简便?他是怎样让计算变得简便的?

  谈话:运用加法结合律,将相加能凑成整百的数先加起来,再与另一个数相加,计算更简便。

  2、教学“试一试”

  谈话:下面两题,你能试着用简便方法计算吗?

  出示“试一试”两题:56+69+2178+(47+22),学生独立完成。同桌之间说一说,你是怎么算的,依据是什么?

  班级交流:选取一组同桌上台展示计算过程,并讲解算法及依据,其他同学补充。

  3、小结:观察黑板上的这3题,我们是如何进行简便计算的?明确:运用加法交换律和加法结合律,我们可以把能凑成整十、整百的数先加起来,再与另一个数相加,让计算变得简便。这就是我们今天学习的,应用加法运算律进行简便计算。(补全课题)

  三、及时训练,巩固提高

  1、解决实际问题(练习九第7题)

  谈话:掌握了简便计算的方法,我们还要用它们来解决实际问题。(课件出示)学生独立完成练习九第7题。

  校对答案。

  提问:怎样算比较快?

  谈话:简便计算可以帮助我们更快地解决问题。因此,解决问题时,如果能简便,尽量简便。

  2、两个数相加

  谈话:刚才我们做的都是三个数相加的算式,同学们做得不错。接下来还有一些挑战题敢不敢试试?

  出示:175+201

  师:这一题你能简便运算吗?两个数,如何凑呢?

  换个思路,可不可以先“拆”?

  师:拆哪个数?(生:拆那个最接近整百的数。)

  师根据学生回答板书。

  师:先拆再凑的.办法真好,谁想出来的,“小数学家”。这两题能用先拆再凑的方法做吗?

  出示:354+102205+417

  师:同桌先互相说一说,你打算拆哪个数。

  学生完成在练习本上。指名板演。交流反馈。

  出示246+198。

  提问:这道题目,你能想办法简便计算吗?小组之中说一说,再独立计算。

  指名板演,共同订正。

  明确:198很接近200,我们可以将它先看成200去计算。但是这样多加了2,因此还要减去2。

  出示刚才做的几道题目

  提问:刚才我们算的这几题,都是怎样让计算变得简便的?分别

  改变了哪个数?(学生口答,教师课件将改变的数圈出)

  提问:改变的都是什么样的数?

  明确:都将一个加数看成和它接近的整百数,然后多加了就减去,少加了就补上。

  师:这几道算式,分别应该改变哪个数?

  口答:204+328436+97299+153

  3、拓展题

  提问:现在,你会简便计算了吗?要想运算更简便,关键是什么?那么,我们来几个难点的挑战,不要被打倒哦!

  ①99+199+2,小组中说一说,再在班级交流。

  ②36+28+44+72,怎么算更简便?同桌之间说一说,再列式计算。

  ③1+2+3+4+……+98+99+100

  好样的,还想继续挑战吗?一百个数呢?(同学们自己独立完成)交流:指名说方法。

  师:当之无愧的小数学家呀,想知道世界上最早用运用简便方法计算这题的人吗?

  播放视频:数学王子高斯的故事。

  师:看了高斯的故事,有什么想说的吗?

  师:是的,只要是深刻而持久的思考就会有发现。

  四、总结

  师:最后回想一下,这节课你有哪些收获?

加法交换律和结合律教案 篇6

  教学内容:

  青岛版小学数学四年级下册第一单元信息窗三13页至14页的内容。

  教学目标:

  1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示。

  2.在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。

  3.让学生在数学学习过程中获得探究的乐趣、成功的喜悦,进一步增强对数学学习的兴趣和信心。

  4.初步形成独立思考、合作交流的意识和习惯。

  教学重点:

  理解掌握加法的交换律和结合律,并会用字母表示他们。

  教学难点:

  引导学生通过讨论,计算从而自己发现并总结出加法交换律、加法结合律的过程。

  教学准备:

  课件、投影仪、卡片

  教学过程:

  一、拟定导学提纲,自主预习

  (一)创设情境

  1.谈话:同学们,长江,黄河就像两条长龙盘卧在中国大地,特别是黄河被称为我们的“母亲河”。这几天我们一直在学习有关黄河的知识,了解到了许多有关黄河的信息,除了我们学过的,你还了解到那些有关黄河的知识?(学生根据课前调查回答)想不想再多了解一些?

  课件展示情境录像:(课件展示的关键是让学生从中知道黄河流域的小知识,例如上游:青藏高原黄土高原内蒙古高原中游:黄土高原下游:华北平原等小知识)最后大屏幕定格在信息窗三的情境图。

  以上展示在大家面前的就是黄河流域图。教师板书:黄河流域

  请同学们仔细观察,你能获得了哪些数学信息?

  学生观察汇报,

  生汇报:根据黄河流域图我了解到黄河分为上游、中游和下游(1、黄河上游长3472千米,中游长1206千米,下游长786千米;2、黄河上游流域面积是39万平方千米,中游是34万平方千米,下游是2万平方千米;)

  教师适时板书相应的信息条件。

  2.你能根据这些信息提出哪些数学问题呢?学生口答。教师板书出问题。

  问题(1)黄河流域的面积是多少万平方千米?

  问题(2)黄河全长多少千米?

  (二)出示学习目标

  同学们提出了这么多有价值的问题,那么今天我们将解决那些问题呢?请看本节课的学习目标:

  1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示,能够运用所学的运算定律进行简算。

  2.在探索运算律的过程中,发展学生的.观察、比较、抽象、概括能力,培养学生的符号感。

  (三)出示自学指导

  为了能够更好地解决今天的`学习目标,老师给大家提供了一些指导意见,请看自学指导。

  自学指导:请同学们认真看教科书第13—14页的信息窗3的第一个红点和小电脑的内容,重点看解决问题的过程,思考:

  (1)怎样解答同学们提出的问题?哪种方法简单?

  (2)什么是加法的结合律?怎样用字母式表示?

  (3)什么是加法交换律?怎样用字母式表示?

  (5分钟后,比一比谁汇报得最清楚。)

  (四)学生自学

  师:下面请同学们根据“自学指导”开始自学,比一比谁看书最认真,谁自学效果最好!(师目光巡视每一个学生,特别要关注特困生。)

  二、汇报交流,评价质疑

  (一)调查

  师:看完的同学请举手?

  (二)全班汇报

  1.问题一:黄河流域的面积是多少万平方千米?

  学生在列式解答时,可能会出现两种情况:

  (1)39+34+2和34+2+39

  (2)(39+34)+2和39+(34+2)。

  2.问题二:黄河全长多少千米?

  学生可能出的情况:

  (1)、3470+1210+790和1210+790+3470

  (2)(3470+1210)+790和3470+(1210+790)。

  今天我们要学的知识就在这两组算式中。

  (设计意图:充分运用教材情境图,引导学生获取信息,提出加法问题。在此基础上让学生列出算式。通过这两组算式学习今天的新知识,为下面学习埋下了伏笔。学生会马上把精力投入到这两个算式的研究中,激发了学生探究的兴趣。)

  3.观察、比较、发现规律

  (1)观察这些算式,你们发现了什么?

  生汇报:每组算式运算的数相同,运算的结果相同,运算的顺序不同。

  例如:

  (39+34)+2=39+(34+2)

  (3470+1210)+790=3470+(1210+790)。

  (2)是不是所有的三个数相加都符合这些规律呢?举例验证一下吧:(每个学生在练习本上写出几组这样的算式,看结果怎样)

  生汇报:

  (35+63)+15=35+(63+15)

  (325+82)+18=325+(82+18)…

  (3)把你的发现告诉大家?(将学生的举例用实物投影展示)

  (三个数相加时,先把前两个数相加,或先把后两个数相加,和不变。)

  师指出这条规律叫做加法结合律。

  (4)你能用你喜欢的方法表示这加法结合律吗?

  学生用各种符号、字母表示这个运算定律。最终教师指出,在数学上,我们统一用a、b、c来表示三个加数,因此加法结合律可以写作(a+b)+c=a+(b+c)。学生齐读,教师板书在黑板上

  小结:刚才我们通过解决两个问题发现并归纳出了加法结和律。

  (设计意图:本环节经历了猜测—举例—验证—得出结论的过程,无形之中培养了学生一种数学思想。)

  4.学法迁移,探索加法交换律。

  那么,加法运算中还有其他的规律吗?想不想知道?我们先来做个游戏吧。

  (1)游戏:找朋友。

  在每个小组中都有一个算式卡片,请同学们小组合作,仔细想一想,算一算,它应该是屏幕上哪个算式的好朋友?为什么?

  (2)同学们真棒,很快就为自己的算式找到了合适的朋友,还有谁的算式没有找到朋友?你能根据刚才同学们的方法给他介绍一个合适的好朋友吗?

加法交换律和结合律教案 篇7

  设计说明

  1.在不断的设疑中启发学生思考、自主探究、发现规律。

  问题是数学学习的根本,通过不断地设置问题,引导学生思考,使学生在比较中感知加法结合律的意义。接着通过验证、猜想,使学生发现加法结合律,并会用字母表示。

  2.注重发挥学生的主体地位,加深对知识的理解。

  《数学课程标准》指出:学生是数学学习活动的主体。本设计在探索的`过程中引导学生通过观察、思考、抽象、概括、交流等活动,经历探究加法结合律的过程,初步感受应用加法结合律可以使计算简便,把学习的主动权交给学生,并在师生互动和生生互动中加深学生对新知的理解和应用,使学生真正体会到数学知识的价值所在。

  课前准备

  PPT课件

  教学过程

  ⊙形成疑问,提出问题

  1.观察、讨论。

  师:这里有两组算式,在○里填上适当的符号。

  (4+8)+6○4+(8+6)

  (19+82)+38○19+(82+38)

  师:观察这两组算式,它们有什么相同的地方?

  (学生在小组内讨论,相互说出自己的发现)

  2.交流发现。

  师:通过讨论,你发现了什么?(学生汇报)

  教师引导:

  (1)几个数相加?(三个,且加数相同)

  (2)分别先算了什么?(前两个数,后两个数)

  (3)结果如何?(得数相同)

  3.提出猜想。

  师:根据刚才的发现,请你猜想一下,加法中除了交换律外,可能还存在什么样的规律?

  (学生猜想:三个数相加,先把前两个数相加,再加上第三个数与先把后两个数相加,再加上第一个数所得的和是相等的)

  设计意图:学生通过计算给出的算式,发现两个算式的相同之处和不同之处,自觉地产生探索的欲望。

  ⊙验证猜想,总结规律

  1.验证猜想。

  (1)仿写算式,验证猜想。

  学生仿写算式,小组内交流,全班汇报。

  (2)举例验证。

  利用生活中的事例验证自己的猜想。

  学生自由举例,小组内交流结果。

  2.明确加法结合律。

  三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,再加上第一个数,所得的和是相等的,这就是加法结合律。

  3.用字母表示加法结合律。

  师:用语言来叙述加法结合律很不方便,能不能用简单的方法表示出加法结合律呢?

  如果用字母a、b、c分别表示三个加数,那么加法结合律应该怎样表示呢?

  (a+b)+c=a+(b+c)

  4.加法结合律的应用。

  (1)感知简便的计算方法。

  师:怎样应用加法结合律呢?下面我们就来试一试。

  课件出示练习:

  根据运算律在下面的□里填上适当的数。

  (25+68)+32=25+(□+□)

  130+(70+4)=(130+□)+□

  64+37+163=64+(□+□)

  (指名回答)

  师:这三个等式都是根据哪个运算律填写的?(学生讨论后汇报)

  师小结:应用加法结合律有时可以使一些计算简便。

加法交换律和结合律教案 篇8

  教学内容:

  义务教育课程标准实验教科书四年级数学,下册P28-29页内容。

  教学目标:

  1、理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

  2、通过观察、猜想、验证、比较、分析、归纳、合作交流等学习过程,经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决进行比较和分析,发现并概括出运算律。

  3、在数学活动中使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

  教学重点:

  理解并掌握加法交换律和加法结合律,能用字母来表示。

  教学难点:

  经历探索加法交换律和结合律的过程,发现并概括出运算规律。

  教学准备:

  多媒体课件

  教学过程

  一、谈话导入,鼓励猜想

  1、出示图片牛顿与“万有引力”

  2、引入“牛顿因为一只苹果掉下来打到他的头上,大胆猜想,是不是所有物体都往下掉呢?通过进一步的观察、思考,经过坚持不懈的努力,最后发现了万有引力定律。我们在平时也要学会观察和思考生活中的一些习以为常的问题,并努力从中探索规律。

  二、合作交流,探索猜想

  (一)故事激趣,初次猜想

  1、朝三暮四

  猴妈妈给小猴们分配桃子,“早上给你们每人3个,晚上每人4个桃。”小猴们很不乐意,“太少了,太少了!”吵着要妈妈多分一些。猴妈妈说:“好的,早上给你们每人4个,晚上每人3个。”小猴们拍手欢呼。听了这个故事,请同学们动脑筋想一想,我们能用数学的眼光说点什么吗?

  2、初步感知,大胆猜想

  出示:3+4=4+3

  师:仔细观察这两个加法算式,你发现了什么?

  得出:两个加数交换位置,和不变。(适时板书)

  (二)广泛举例,验证猜想。

  师:这里是3和4的位置交换了,和没变。仅凭一个例子就得出“两个加数交换位置,和不变”的结论,似乎草率了一点。我们不妨把这个结论当作一个猜想(教师随即将生1的结论加上“?”)

  师:既然是猜想,想不想知道猜的对不对?

  生:想。

  师:我们还得举例验证。

  1、举例要求:

  (1)任意两个数,求出他们的和;

  (2)交换两个加数的位置,再求出两个数的和:

  (3)比较两次的结果,判断式子是否相等。

  2、学生汇报,师板书。

  3、小结:根据自己的等式,再次观察比较,发现:交换两个加数的位置,和不变?这一猜想是对的。(同时将“?”改成“。”)

  4、揭题:大家发现的这个规律叫什么呢?

  学生交流后,师板书。

  5、用字母表示加法交换律。

  (1)观察自己仿写的式子,独立思考或小组讨论,然后用自己喜欢的形式表示。

  (学生可能使用文字,图形,符号等方式)

  (2)用字母表示加法交换律:a+b=b+a

  6、追问:加法交换律中,什么变了,什么没有变?

  7、原来,猴妈妈就是巧妙地运用了加法交换律中的“变”与“不变”,轻松的解决了分桃的问题,其实同学们在以往的学习中也不知不觉的运用过?(加法计算“验算”的时候)

  (3)出示教材56页的例题情境图。

  解决:跳绳的有多少人?

  28+17=45(人)17+28=45(人)

  (三)规律延伸,猜想拓展。

  1、根据反思,拓展规律。

  师:同学们真棒,从个别例子中形成猜想,并举例验证,获得了加法交换律。但有时,从已有的结论中通过适当的变换、联想,同样可以形成新的猜想,进而形成新的结论。那么“在加法中,交换两个加数的位置和不变。”那么,其它三种运算中呢?

  生可能会说出以下几个想法?

  “猜想二:减法中,交换两个数的'位置差不变?”“猜想三:乘法中,交换两个数的位置积不变?“"猜想四:除法中,交换两个数的位置商不变?”

  “猜想五:几个加数时,变换加数的位置和也不变?“

  2、举例探究,验证猜想。

  师:现在同学们又有了不少新的猜想。这些是与众不同的、全新的`猜想!如果猜想成立,它将加大我们对“加法交换律”的认识。那这猜想对吗?又该如何去验证呢?选择你最感兴趣的一个,用合适的方法试着进行验证。

  3、汇报交流,验证猜想。

  师:哪些同学选择了“猜想二”又是怎样验证的?请生汇报,观察、总结

  小结:

  a、验证的结果是减法中,交换两个数的位置差会变,猜想不成立。

  b、只要能举一个反倒,就能验证猜想肯定不成立。

  验证猜想三。

  师:哪些同学选择了“猜想三”,又是怎样验证的?学牛汇报,观察、小结:乘法中,交换两个数的位置积不变?验证结果是积不变,猜想成立。这就是我们将来要学习的乘法交换律。用字母表示这样的规律。简洁交换律:axb=bXa。

  验证猜想四

  师:哪些同掌选择了“猜想四”,又是怎样做的?

  学生汇报,观察、小结:验证结果是“除法中,交换两个数的位置商会变。”猜想不成立。

加法交换律和结合律教案 篇9

  教学目标:

  1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

  2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。

  3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

  教学重点:

  使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

  教学难点:

  使学生经历探索加法结合律和交换律的过程,发现并概括出运算律。

  教学准备:

  挂图、小黑板

  教学过程:

  一、教学新课教学加法交换律。

  1、一年一度的学校运动会又即将举行了,学校的同学们都在做充分的准备。从这张图片中,你获得了哪些数学信息?

  你能根据这些信息,提出几个用加法计算的问题吗?请学生回答。

  ①参加跳绳的一共有多少人?

  ②参加活动的女生一共有多少人?

  ③跳绳的男生和踢毽子的女生一共有多少人?

  ④参加活动的一共有多少人?

  2、今天这节课,我们就一起来研究其中的这两个问题:

  在黑板上张贴:参加跳绳的有多少人?

  参加活动的一共有多少人?

  我们先来解决第一个问题:参加跳绳的一共有多少人?

  3、你们能马上口头列式并口算出结果吗?

  指名回答,教师板书:2817=45(人)追问:还有其他的方法来解决吗?在学生回答后,教师完成板书:1728=45(人)

  为什么这两个算式的结果一样?

  4、你们能用一个符号把它们连接起来吗?教师继续板书:2817=1728

  这是一个等式,仔细地观察一下这个等式,你们有什么发现?在等号的两边,什么地方相同?什么地方不同?(同桌交流并汇报)

  5、你们能够自己模仿写出几个这样的算式吗?根据学生回答,教师相机板书算式,并追问:这样的算式能写几个?

  6、我们再仔细的观察这几个算式,从中你们发现什么规律?(用自己的话来说一说)你能用自己喜欢的方法、符号或文字来表示你们的发现吗?

  教师巡视,并作相应的辅导,板书学生回答的一些符号表示的算式。并追问:你这样表示,每个符号分别表示什么?

  7、同学们都自己用自己喜欢的方式表示了你们的发现,那你们想不想把这些算式都统一呢?国际上一般用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这些算式能够怎样来表示呢?板书:ab=ba。

  8、教师小结知识点:在很平常的一些四则运算中包含了一些规律性的.东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的就是加法交换律(板书加法交换律),学生齐读一遍。

  9、其实加法交换律我们早就会用了,想想看,什么时候我们用过?(在验算加法时用的就是加法交换律)

  二、学习加法结合律。

  1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究第二个问题“参加活动的一共有多少人?”看看我们有没有新的发现?

  2、你们会自己列式解决这个问题吗?学生练习,教师巡视指导。

  3、学生回答,教师有意识的板书:

  (2817)23=68(人)

  28(1723)

  (2823)17

  28(2317)

  (2317)28

  23(1728)

  交流不同的算法。

  下面,我们就来针对这两个算式开展研究:(2817)23 28(1723)

  (为了看得清楚,我们给2817添上括号)

  4、观察或计算一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?教师板书:

  (2817)23=28(1723)

  5、出示:下面的Ο里能填上等号吗?口算或计算一下。

  (4525)13Ο45(2513)

  (3618)22Ο36(1822)

  学生回答,教师板书:(4525)13=45(2513)

  (3618)22=36(1822)

  6、看着黑板上的板书,你们从中有了什么新的发现?把你的发现在小组内先交流一下。学生小组交流后大堂再交流。

  7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。

  板书:(ab)c=a(bc)

  a、b、c各代表什么?(ab)c表示什么?a(bc)表示什么?

  教师揭示:这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。

  四、巩固练习。

  1、完成“想想做做”第1题。

  以游戏的形式进行,女生代表交换律,男生代表结合律。

  2、完成“想想做做”第2题(出示小黑板)说说是怎么想的。

  3、完成“想想做做”第3题第1行。

  4、插入“朝三暮四”的故事,来听个“朝三暮四”的成语故事。

  战国时代,宋国有一个养猴子的老人,他在家中的院子里养了许多猴子。日子一久,这个老人和猴子竟然能沟通讲话了。这个老人每天早晚都分别给每只猴子四只桃子。几年后,老人的经济越来越不充裕了,而猴子的数目却越来越多,于是他就和猴子们商量说:“从今天开始,我每天早上给你们三只桃子,晚上还是照常给你们四只桃子,不知道你们同意不同意?”猴子们听了,都认为早上怎么少了一个?于是一个个就开始吱吱大叫,而且还到处跳来跳去,好像非常不愿意似的。

  老人一看到这情形,连忙改口说:“那么我早上给你们四只,晚上再给你们三只,这样该可以了吧?”猴子们听了,以为早上桃子已经由三个变成四个,跟以前一样,就高兴的在地上翻滚起来。听了这个故事,你们有哪些想法?

  让学生通过故事得出:猴子很愚蠢,因为总量不变,只是老人采用了加法交换律。

  5、完成“想想做做”第4题。

  男生做第一行,女生做第二行。表扬女生快,知道为什么吗?

  使学生初步感受应用加法运算律可以使计算简便。

  6、完成“想想做做”第5题。

  师:你能很快地找出哪两片树叶上的数的和是100吗?

  学生在书上连线,同桌相互校对。

  师:看来,在计算过程中,要有一双敏锐的眼睛,看到数字就能很快地判断出能不能凑成整百数。

  五、课堂总结。

  通过本节课的学习,你有什么新的收获?

  教学反思:

  这节课主要教学加法的`交换律和结合律,从创设的贴近学生的生活情境出发,让学生自由地提问,可以培养学生的发散性思维,并培养学生的问题意思。同时也符合新课程“创造性使用教材”理念。在教学中主要通过让学生观察几组算式,从中总结出加法的交换律和结合律。学生能较快的体会出这两种加法的运算律,但在总结、交流加法的结合律时,学生的语言表达能力较差,教师应适当的进行指导和帮助。同时要鼓励学生用自己最喜欢的方法记忆加法的运算律,提高学生掌握能力。学生的记忆方法过于单调,教师应在开发学生思维上多下功夫。几个层次的练习,内容丰富,提供了具有价值的学习内容,使全体同学都参与到有趣的数学学习中,从验算中明白了其理论依据,从故事中分析出了其中蕴涵的运算律,既体会到了数学的乐趣,又复习巩固了全课的内容。在练习“想想做做”第1题第4小题时,注意让学生说清应用的运算律,这样才能为以后教学应用运算律进行简便计算作好铺垫。很可惜,我引导得不是最合适,学生自己发现的不多。整节课,由于新授部分花时较多,显得稍有拖沓,导致了有些练习来不及处理。

加法交换律和结合律教案 篇10

  【学习内容】

  加法结合律。教科书第57页。

  【文本分析】

  加法结合律是《运算律》单元第一课时的第二个例题,这节课的教学内容包括加法交换律和加法结合律。这节课是在学生经历了一系列关于四则运算的学习后,对于运算律有了一定的感性认识的基础上,进一步通过一些实例来引导学生进行概括。而加法结合律则是在学习了加法交换律的基础上展开的。本课的教学重点在于让学生在探索中经历运算律的发现过程,理解不同算式间的相等关系,发现规律,概括运算律。但概括运算律则是本课的教学难点。

  教学重点:使学生理解并掌握加法结合律,能用字母来表示加法结合律。

  教学难点:使学生经历探索加法结合律的过程,发现并概括出运算定律。

  【学习目标】

  1、让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。

  2、通过学生的自主观察、比较、分析、归纳,合作交流等学习活动,使学生经历探索加法结合律的过程,进行比较和分析,发现并概括出运算律。

  3、让学生用符号和字母表示出发现的规律,抽象、概括出运算律,使学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理地建构知识。

  4、通过学生积极参与规律的`探索、发现和归纳,使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考问题的意识和习惯。

  【导学过程】

  教学加法结合律。

  1、初步感知

  课的开始出示例题图,通过解决“参加活动的一共有多少人?”得出一个等式,让学生有一个初步的感知,为接下来进一步进行加法结合律的研究做好铺垫。

  (28+17)+23=28+(17+23)

  接下来,再出示两组算式,请学生算一算每组两道算式的结果是多少?○里应该填什么符号?积累感性认识的素材。

  (45+25)+13○45+(25+13);(36+18)+22○36+(18+22)

  2、观察、思考、交流

  陶行知先生提出了“六大解放”的主张:解放小孩子的头脑、解放小孩子的双手、解放小孩子的嘴、解放小孩子的空间、解放小孩子的时间及把小孩子的双手、嘴、空间和时间都解放出来。“让学生能够自己去探索、自己去辨析、自己去历练,从而获得正确的认识和熟练的能力。”

  “发生认识论”的创立者皮亚杰认为知识、智力的个体发生离不开认识主体的自主活动。只有当学生的能动性充分发挥时,他的聪明才智才能充分表现出来,教学质量才有真正提高的可能。

  这个“学生十分钟”的环节我们设计让同学们在学案的指导下自主进行观察、思考和交流。这样设计基于两点原因:一是学生前面已经有了一系列关于四则运算学习的基础,积累了大量的感性认识,具备了探究的知识基础;二是在加法交换律的学习中,学生已经有了一定学习运算律的经验,掌握了一些探究运算律的方法,具备了探究的能力基础。

  基于以上两点,我们把加法结合律的探究放手给学生,让学生在学案的指导下独立开展探究活动。

  学案中我们设计了以下几个环节:

  (1)观察

  每组的两道算式有什么相同的地方?有什么不同的地方?

  这三组算式有什么共同的特点?

  (2)仿写

  照样子再写出一组这样的式子,填在上面的横线上。

  (3)发现规律

  从这些例子中发现了什么规律?再用自己喜欢的方式表示在下面的横线上。

  在最后交流的环节,我设计了两个层次:一是小组交流,希望在这个环节中能够充分发挥优生的作用,让学生教学生,同时由于前面有充分的思考时间,学习能力较弱的学生也有话可说,而不是只能做一个听众;二是全班交流,这段时间仍然是交给学生的,代表小组发言的孩子主讲,把他们小组的讨论进行汇报,再由其他的孩子进行纠正和补充,全面调动学生的眼、耳、脑,达到最佳的教学效果。

加法交换律和结合律教案 篇11

  教材分析:

  本教材是在学生经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上,结合一些实例,学习加法的运算律。学生从小学一年级开始,就在加法的计算中和演算中接触过这方面的知识,有较多的感性认识,这是学习加法交换律的基础。教材安排这两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。教材有意识地让学生运用已有经验,经理运算律的发现过程,让学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理地构建知识。

  “想想做做”先安排了一些基本练习,以填空、判断等形式巩固对加法运算律的理解;接着通过题组对比和凑整等练习,为学习简便计算作适当渗透。

  教学目标:

  1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

  2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。

  3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

  教学重点:

  使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

  教学难点:

  使学生经理探索加法结合律和交换律的过程,发现并概括出运算律。

  教学准备:

  配套课件。

  教学过程:

  一、课前谈话。

  有牛顿因为看见苹果落地,进行思考,经过坚持不懈的努力,最后得出了万有引力定律这个伟大的成果。引导学生得出:要注意观察、思考生活中一些习以为常的问题,并从中探索出一些规律。

  设计意图:由科学家从一个平常的现象得出伟大的发现,引导学生应注意观察身边的一些平常的、习以为常的现象,并从中的出一些规律,对学生进行良好学习习惯的教育。

  二、教学加法交换律。

  1、随着气候渐渐转凉,从下个月开始,同学们都将投入到冬季锻炼中去了。电脑出示第54页的例题,这是某个班级进行冬锻的情况,提问:从这张图片中,你获得了哪些数学信息?

  你能根据这些信息,提出几个用加法计算的问题吗?根据学生的回答,电脑依次出示:

  ①参加跳绳的一共有多少人?

  ②参加活动的女生一共有多少人?

  ③跳绳的`男生和踢毽子的女生一共有多少人?

  ④参加活动的一共有多少人?

  设计意图:从创设的贴近学生的生活情境出发,让学生自由地提问,可以培养学生的发散性思维,并培养学生的问题意识。同时,也符合新课程“创造性使用教材”的理念。

  2、今天这节课,我们就一起来研究其中的这两个问题:

  在黑板上张贴:参加跳绳的一共有多少人?

  参加活动的一共有多少人?

  我们先来解决第一个问题:参加跳绳的一共有多少人?

  3、你们能马上口头列式并口算出结果吗?

  指名回答,教师板书:28+17=45,追问:还有其他的方法来解决吗?在学生回答后,教师完成板书:17+28 =45(人)

  为什么这两个算式的结果一样?

  4、你们能用一个符号把它们连接以来吗?教师继续板书:28+17=17+28

  仔细地观察一下这两个算式,你们有什么发现?在等号的两边,什么地方相同?什么地方不同?

  5、你们能够自己模仿写出几个这样的算式吗?根据学生回答,教师相机板书算式,并追问:这样的算式能写几个?

  6、我们再仔细的观察这几个算式,从中你们有什么发现?你们能用一个算式来表示你们的发现吗?

  教师巡视,并作相应的辅导,在学生交流后板书出示:两个数相加,交换加数的位置,它们的和不变。并板书学生回答的一些符号表示的算式。并追问:你这样表示,每个符号分别表示什么?

  7、同学们都自己用自己的喜欢的方式表示了你们的`发现,那你们想不想把这些算式都统一呢?国际上一般用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这些算式能够怎样来表示呢?板书:a+b=b+a。

  8、教师小结知识点:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的就是加法交换律(板书:加法交换律),学生齐读一遍。

  小结研究方法:刚才我们在研究加法法交换律的时候,我们是怎样一步一步开展研究的?引导学生能得出:列式计算——观察思考——猜测验证——得出结论。

  9、练习:

  完成想想做做第一题前面两小题。

  设计意图:教师是教学的组织者和引导者,而不仅仅是解题指导者。本环节的设计,层层递进,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用字母表示,最后还归纳出了研究方法,都让学生有一种成就感。

  三、学习加法结合律。

  1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究问题“参加活动的一共有多少人?”看看我们有没有新的发现?

  2、你们会自己列式解决这个问题吗?想想你为什么这样列式?学生练习,教师巡视指导。

  3、学生回答,教师有意识地板书:

  (28+17)+23=68(人)

  28+(17+23)

  (28+23)+17

  28+(23+17)

  (23+17)+28

  23+(17+28)

  让回答的同学说说这么列式是怎么思考的?

  下面,我们就来针对这两个算式开展研究:(28+17)+23 28+(17+23)

  设计意图:本环节又是“用教材教”的一个很好体现,比较好地注意了关注学生的生成与教师预设之间的联系,并很好地引导到需要的算式。

  4、根究研究方法,接下来我们应该进行哪一步?(观察思考)那你们观察一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?教师板书:

  (28+17)+23=28+(17+23)

  5、电脑出示:下面的Ο里能填上等号吗?

  (45+25)+13Ο45+(25+13)

  (36+18)+22Ο36+(18+22)

  学生回答,教师板书:(45+25)+13=45+(25+13)

  (36+18)+22=36+(18+22)

  6、看着黑板上的板书,你们从中有了什么新的发现?学生小组交流后大堂再交流,教师张贴:三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。

  7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。

  板书:(a+b)+c=a+(b+c)

  教师揭示:这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。

  8、完成“想想做做”第1题的后面两个小题。

  设计意图:通过引导学生运用得到的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。

  四、巩固练习。

  1、完成“想想做做”第2题。

  第4小题引导学生发现是运用了加法交换律和加法结合律。

  2、完成“想想做做”第3题第1行。

  3、插入“朝三暮四”的故事,让学生通过故事得出:猴子很愚蠢,因为总量不变,只是老头采用了加法交换律。

  4、完成“想想做做”第4题。

  使学生初步感受应用加法运算律可以使计算简便。

  设计意图:几个层次的练习,内容丰富,提供了具有价值的学习内容,使全体同学都参与到有趣的数学学习中,从验算中明白了其理论依据,从故事中分析出了其中蕴涵的运算律,既体会到了数学的乐趣,又复习巩固了全课的内容。

  五、课堂总结。

  通过本节课的学习,你有什么新的收获?

  设计意图:体现了教师的主导作用和学生的主体作用,使学生在自己的整理总结中再次巩固了本节课的重难点。

  板书设计: 运算律

  加法交换律 加法结合律

  28+17=45(人) 17+28=45(人) (28+17)+23 28+(17+23)

  28+17=17+28 =45+23 =28+40

  (学生说的算式) =68(人) =68(人)

  (28+17)+23=28+(17+23)

  (45+25)+13=45+(25+13)

  (36+18)+22=36+(18+22)

  a+b=b+a (a+b)+c=a+(b+c)

加法交换律和结合律教案 篇12

  教学目标:

  1、使学生探索加法运算律的过程,理解并掌握加法的交换律和结合律,并初步感知加法运算律的价值,发展运用意识。

  2、学会用字母表示运算律,初步培养符号感和归纳、推理的能力。

  3、在数学活动中,增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。

  教学重难点:

  理解并掌握运算律,并进行运算。

  教学方法:

  主动探索法

  教学用具:

  挂图、卡片

  教学过程:

  一、情景导入

  1、谈话:同学们喜欢玩吗?玩什么?(师生做游戏进入新课)

  2、出示情景图,仔细看图,读懂图中的信息。

  (1) 同桌间说信息,提加法问题。

  (2) 展示学习成果(师相机贴出问题卡)

  (3) 教师小结进入课题并板书:加法运算律

  二、探索加法交换律

  1、解决问题“跳绳的有多少人?”

  (1) 学生自练,展示学习成果。(指两名用不同方法计算的同学展示)

  (2) 说说自己的发现。(同桌交流,展示)

  (3) 师小结并板书28+17=17+28

  (4) 让学生举例(自练)展示教师相机板书

  2、讨论交流:

  A、每组中的两个算式的异同。

  B、这几组算式是不是都具有这样的特点?

  C、说说自己发现的规律。(用自己的话或用自己喜欢的方式表示)

  D、用字母a、b表示两个加数,怎样表示?(师生交流总结并板书)

  E、a+b=b+a(说说字母各表示什么?)

  3、练习

  357+218(计算并验算)

  三、探索加法结合律

  (1) 出示问题二“参加活动的一共有多少人?”(学生自己练习,师巡视指用不同方法

  计算的同学上台板演)

  (2) 让学生观察比较得出结果,师板书:(28+17)+23=28+(17+23)

  交流自己的发现

  (3) 出示两组算式,观察并探索其中的规律。

  用学习例1的.方法总结出加法结合律,说说其中的字母及识字的含义。

  四、巩固理解运算律

  卡片出示课后“想想做做”中的练习题(自练,指名说)(同桌交流,展示)

  五、总结提高

  1、这节课我们学习了加法的哪两个运算律?说说自己的收获。

  2、教师小结:

  加法交换律和加法结合率都是加法运算中存在的规律,涉及到的数都是加数。加法交换率涉及到的加数只是交换了位置,和不变;加法结合率涉及到的加数位置不变,只是改变了运算顺序,和也不变。

  六、布置作业

  完成课后未完成的题目 板书

  运算律加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)

加法交换律和结合律教案 篇13

[教材简解]

  《加法交换律和加法结合律》是小学数学第七册第六单元第1课时的内容,这是学生第一次接触运算定律,对于加法交换律的内容,从知识的层面上看,学生学习、理解、运用起来比较容易。而且在以往的学习过程中也已经渗透,让学生积累了一定的感性认识。学习加法的运算定律,为以后学习用字母表示数打下初步基础,同时也为简便运算打下基础。

  [目标预设]

  1、使学生经历观察、猜想、验证、结论的探索加法运算律的过程,结合具体实例,理解并掌握加法的交换律和结合律,会运用加法交换律进行加法验算.

  2、在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。

  3、让学生在数学学习过程中获得探究的乐趣和成功地喜悦,进一步增强对数学学习的兴趣和信心,初步形成独立思考、合作交流的意识和习惯。

  4、通过自主探究、相互合作获得成功的体验,提高学习数学的兴趣。

  [重点、难点]

  1、让学生在探索中经历运算律的发现过程。

  2、理解不同算式间的相等关系,发现规律,概括运算律。

  [设计理念]

  1、尊重儿童的认知规律,注重新旧知识的联系,引导学生在自主、合作、探究中巩固旧知识,发现新知识,掌握新方法。

  2、以学生的“最近发展区”为向导,精心设计课堂教学策略,由浅入深,由易到难,循序渐进,预设出合理的教学流程与思维坡度。

  3、本着真实有效的宗旨,让课堂焕发生活的活力,让每个孩子在民主、平等的课堂中得到不同的发展。并注重教师与学生对话,学生与学生对话,在对话中加强情感交流,使得课堂真正成为师生互动、心灵对话的舞台,从而让教师与学生都获取丰富的,积极的情感体验,进一步增强学生学习数学的兴趣。

  [设计思路]

  1、展示生活题材的数学例题,唤起学生对旧知的回忆,从而初步感受规律。

  2、充分感知,让学生在具体的数学活动中观察,比较、不断地思考与建构。得出规律,并能运用规律。

  3、帮助学生反思学习过程,并总结数学思想与方法,并让学生尝试,通过小组合作学习,让学生相互启发,相互补充,完成新知识的学习。进一步培养学生的自主探究意识。

  4、总结归纳。通过对一节课学习的回顾,让学生谈谈收获,尤其是在数学的思想与方法上做出评价。

  [教学过程]

  一、创设情境,激趣导入

  1、出示高斯小学的故事:1+2+3+4+5+6……+97+98+99+100=?

  2、引入新课:高斯为什么能快速的找到答案,计算加法时是不是有什么运算规律呢?我们今天就一起来探索这个问题。

  板书:加法运算规律

  二、自主探索,寻找规律(加法交换律)

  (一)出示情境图

  四年级的同学们在开展跳绳和踢毽子的活动,从图中你获得了那些数学信息呢?根据这些数学信息,你能提出用加法计算的数学问题吗?(多指名说)

  (二)解决问题,探究规律

  1、出示问题:

  (1)跳绳的有多少人?

  (2)女生共有多少人?

  (3)参加活动的一共有多少人?

  2、师生研究解决第一个问题,揭示加法交换律。

  (1)指名口头列式:28+17;还可以怎样列式?17+28;说说各算式表示的意思。

  (2)这两个式子相等吗?为什么?(计算结果相等)(都是求跳绳的有多少人)那我们就可以用“=”把它们连接起来。教师板书:28+17=17+28,指名读算式。

  (3)解答:女生共有多少人?板书等式:17+23=23+17

  (4)仔细观察这两组等式左右两边的`算式,思考:什么变了?什么没变?你有什么想法?(两个数的位置变了,数据、运算符号、结果没有变)

  (5)这只是猜想,这种猜想在其他加法运算中也存在吗?你还能举几个像这样的例子吗?(指名说,教师板书。)这样的例子写的完吗?

  (6)仔细观察这些等式,你有什么发现?能找出它们共同的规律吗?用自己的话说一说。全班交流。

  (7)师:刚才老师用省略号把无数个这样的等式藏了起来,你还能用自己喜欢的方式比如字母、符号、文字等方式把这个规律简明的表示出来吗?试试看。

  交流介绍:数学中一般用字母来表示:a+b=b+a,这里的a可以表示任意一个加数,b可以表示任意的另一个加数。这也是我们刚才通过观察、猜想、验证所得到的结论。这个规律叫加法交换律.这是我们今天要学习的第一个运算律。(板书课题)

  3、其实加法交换律对于我们并不陌生,回顾一下,我们以前学习什么知识时也用了加法交换律?想一想加法是怎样验算的?

  4、巩固练习,完成自主练习单(一)

  自主练习单(一)

  1、根据加法交换律填空。

  23+35=35+()a+12=12+()

  23+()=178+()()+98=()+56()+()=()+()

  2、计算下面各题,并用加法交换律进行验算。

加法交换律和结合律教案 篇14

  教学目标:

  1.在解决实际问题的过程中,发现加法交换律和结合律,学会用字母表示加法交换律和结合律。

  2.在探索运算律的过程中,发展学生的分析比较、归纳概括的能力,渗透建模的数学思想,培养学生的符号感。

  教学重点:

  理解并掌握加法交换律、结合律。

  教学难点:

  归纳、概括出加法交换律和结合律。

  教学准备:

  课件

  教学过程:

  一、谈话引入

  1.师生谈话。

  同学们,你们喜欢跳绳和踢毽子吗?我们班哪位同学跳绳比较强?谁踢毽子比较强?

  学生自由发言。

  2.课件出示教材第55页例题1情境图,你能从图中获取哪些数学信息?(学生自由说)

  追问:你能根据这些信息,提出哪些用加法计算的问题?

  (1)跳绳的有多少人?

  (2)参加活动的女生有多少人?

  (3)参加活动的一共有多少人?

  3.导入新课。

  在过去的学习中,我们进行过很多的加法运算,你知道在加法运算里有哪些基本规律吗?今天我们就一起来探索加法中的运算规律。(板书课题)

  二、交流共享

  1.加法交换律。

  (1)提出问题:求跳绳的有多少人,应该怎样列式计算?

  (2)列式解答。

  指名学生回答,教师板书:28+17=45(人)

  追问:还可以怎样列式?

  教师板书:17+28=45(人)

  (3)观察发现。

  提问:这两道算式都是求什么的人数?结果都是多少?再观察算式,说说它们有何相同点和不同点。

  引导学生发现:这两道算式都是求跳绳的总人数,加数相同,得数也一样,只不过是把两个加数的位置调换了一下。

  引导:我们可以用什么符号将这两道算式连起来呢?(等号)

  师板书:28+17=17+28

  (4)照样子写一写。

  让学生试写等式,并投影展示。

  提问:观察这些等式,你有什么发现?

  (两个加数交换位置,和不变)

  (5)指导学生用自己喜欢的方法表示出这种规律。

  学生在各自的练习本上表示规律后,交流各自的表示方法。

  (6)用字母表示加法交换律。

  明确:如果用字母a、b分别表示两个加数,上面的规律可以写成:

  a+b=b+a

  教师指出:两个数相加,交换两个加数的位置,和不变。这就是加法交换律。(板书:加法交换律)

  2.加法结合律。

  (1)课件出示问题:跳绳和踢毽子的一共有多少人?

  (2)学生独立列式计算。教师巡视,注意不同的解答方法,并指名两人板演不同的方法。

  (3)组织汇报交流。

  解法一:先算出跳绳的.有多少人。

  (28+17)+23

  =45+23

  =68(人)

  解法二:先算出女生有多少人。

  28+(17+23)

  =28+40

  =68(人)

  提问:这两道算式有什么相同的地方和不同的地方?

  学生观察、比较这两个不同算式的计算结果。

  追问:这两道算式的结果相同,我们可以把它写成等式吗?怎样写?

  根据学生的回答,师板书:(28+17)+23=28+(17+23)

  (4)加深认识、探索规律。

  ①课件出示下面两道算式,让学生算一算,判断下面的○里能不能填等号。

  (45+25)+16○45+(25+16)

  (39+18)+22○39+(18+22)

  ②组织观察:这几组算式有什么共同的地方?有什么不同的地方?你从这些例子中可以发现什么规律?

  学生交流得出:这两个算式中,三个加数分别相同,加数的位置也相同;先把前两个数相加,或者先把后两个数相加,和不变。

  追问:如果用字母a、b、c分别表示三个加数,这个规律可以怎样表示?

  师板书:(a+b)+c=a+(b+c)

  小结:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。这就是加法结合律。(板书:加法结合律)

  三、反馈完善

  1.完成教材第56页“练一练”。

  让学生说说每个等式各运用了什么运算律及判断的依据。

  第三小题既交换了位置,又改变了运算顺序,所以该小题运用了加法交换律和加法结合律。

  2.完成教材第58页“练习九”第1、2、3题。

  (1)第1题中的最后一小题运用了加法交换律和加法结合律。

  (2)第2题是运用加法交换律进行验算,这在过去的计算过程中有学习过,通过这几题的练习加深学生的认识。

  (3)第3小题让学生通过计算和观察、比较,进一步认识加法交换律和结合律。

  让学生计算,并说说每组中两题的联系。

  比较每组中的两题,说说哪一题计算起来更加简便。

  四、反思总结

  通过本课的学习,你有什么收获?还有哪些疑问?

加法交换律和结合律教案 篇15

  教学目标

  1. 使学生理解并掌握加法交换律和结合律,能用字母来表示加法交换律和结合律。

  2. 使学生能运用加法交换律和结合律进行一些简便运算。

  3. 培养学生分析、推理的能力,以及灵活运用所学知识解决实际问题的能力。

  教学重点

  理解并掌握加法交换律和结合律,能用字母来表示加法交换律和结合律。

  教学难点

  能运用加法交换律和结合律进行一些简便运算。

  教学准备

  多媒体课件、练习纸等。

  教学过程

  一、导入新课

  1. 复习旧知:回顾之前学过的加法运算,提问学生加法的基本性质。

  2. 引入新课:今天我们要学习的是加法的两个重要性质——交换律和结合律。

  二、探究新知

  1. 加法交换律

  (1)出示几个加法算式,让学生观察并尝试找出它们之间的关系。

  (2)引导学生发现:两个数相加,交换加数的位置,和不变。这就是加法交换律。

  (3)用字母表示加法交换律:a + b = b + a。

  (4)举例验证加法交换律的正确性。

  2. 加法结合律

  (1)出示几个含有三个加数的加法算式,让学生尝试改变加数的'组合方式,观察结果是否改变。

  (2)引导学生发现:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。这就是加法结合律。

  (3)用字母表示加法结合律:(a + b) + c = a + (b + c)。

  (4)举例验证加法结合律的正确性。

  三、巩固练习

  1. 完成课本上的相关练习题,巩固对加法交换律和结合律的理解。

  2. 分组讨论:在实际生活中,哪些地方用到了加法交换律和结合律?

  3. 小组展示:各小组分享讨论结果,教师点评并补充。

  四、课堂小结

  1. 总结加法交换律和结合律的概念及用字母表示的方法。

  2. 强调在实际计算中,灵活运用加法交换律和结合律可以使计算更加简便。

  五、布置作业

  1. 完成练习册上的相关习题。

  2. 预习下一节内容,为新课做好准备。

  教学反思

  本节课通过引导学生观察、发现、总结,使学生自主掌握了加法交换律和结合律。在巩固练习环节,通过分组讨论和小组展示,培养了学生的合作意识和表达能力。但在实际教学中,还需注意关注学生的个体差异,对于理解困难的学生应给予更多的关注和帮助。

加法交换律和结合律教案 篇16

  教学目标

  1、使学生经历探索加法交换律和结合律的过程,理解并掌握加法交换律和结合律,初步感知加法运算律的价值,发展应用意识。

  2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。

  3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。

  教学重点

  让学生在探索中经历运算律的发现过程,理解不同算式间的相等关系,发现规律,概括运算律。

  教学难点

  概括运算律,尝试用字母表示

  教学过程

  一、探索加法交换律

  1、看谁填得又对又快?

  96+35=35+( ) 204+( )=57+204

  23+( )=15+( ) ( )+257=( )+63

  2、观察与发现

  提问:仔细观察这6个算式,你发现了什么?

  3、猜测与尝试

  是不是所有的加法算式,加数交换位置以后,结果都相等呢?

  4、生活中的应用

  图示:

  图中的小朋友在干什么?从图中你了解到了什么?能提出数学问题吗?我们选择一个:跳绳的有多少人?

  【预测:学生通常会列出28+17这样的算式,如果出现了17+28,让学生评议是否正确?28+17表示什么?17+28表示什么?】

  5、用自己的话说说你的发现

  【预测:学生的说法可能不够简练和准确,教师用肢体、表情等引导学生说清楚,再归纳】

  教师小结:类似这样的等式能写完吗?虽然我们写出的等式各不相同,但是仔细观察,它们却蕴藏着共同的规律,那就是——交换加数的位置,和不变,这就叫做加法交换律。

  6、用字母表示加法交换律

  教师:在数学上,我们通常用字母a和b来表示两个加数,那么,加法交换律可以写成:a+b=b+a。

  7、加法交换律的应用之一:验算

  加法交换律是我们的老朋友了,想一想,什么时候曾经用过它?

  加法验算,交换两个加数的位置再加一遍就是运用了加法交换律。

  二、探索加法结合律。

  1、运用加法交换律使计算简便

  出示例题:回到操场,刚才是跳绳的同学,现在有什么变化?(屏示:23个踢毽子的女同学)

  学生独立完成,要求列出综合算式。

  展示(选择有代表性的几种进行展示):

  28+17+23 28+17+23 28+17+23

  =45+23 =17+23+28 =28+(17+23)

  =68(人) =40+28 =28+40

  =68(人) =68(人)

  【预测:以上三种不同的算法,学生做出前两种应该没有问题。至于第三种,学生能够想到,能运用小括号使计算简便,一并观察探索研究。】

  2、探索加法结合律

  28+17+23

  思考,如果不使用加法交换律调整加数的位置,有没有办法先计算17+23呢?

  【预测:学生能很快想到,使用小括号,可以改变原有的运算顺序,使计算简便。】

  指明一位学生板演。

  3、猜测规律,举例验证。

  这个发现,会不会仅仅是一种巧合呢?如果换成其他的`三个数相加,左右两边的得数还会相同吗?你能不能再举些例子来验证?同桌互相验证,全班汇报。

  4、归纳什么叫加法结合律

  学生观察,教师提问:计算28+17+23,按照四则运算法则,应该先算什么?(指明学生回答)

  继续提问:可是我们发现,先算17+23,可以得到一个整十数,再跟28相加,计算就会简便的多,所以我们选择先把后两个数相加,这样的话,结果会不会改变呢?

  归纳小结:先把前两个数相加,或者先把后两个数相加,结果不变,这就叫做加法结合律。

  5、用字母表示加法结合律

  鼓励学生尝试用字母表示加法结合律。

  6、巩固与练习

  你能在方框内填出合适的数吗?

  (45+36)+64=45+(36+)

  (72+20)+=72+(20+8)

  560+(140+70)=(560+)+

  【预测:学生急于尝试刚学到的运算定律,可能只是急着填数,而忽略了计算结果。教师在充分肯定学生的练习正确之时,多提一个要求:现在你能马上算出它们的结果了吗?】

  三、课堂练习

  1、你能把得数相同的算式连一连吗?

  (1)72+16 A.(75+25)+48

  (2)45+(88+12) B.16+72

  (3)75+(48+25) C.(45+88)+12

  (4)(84+68)+32 D.84+(68+23)

  【预测:第四个算式和D选项算式是连不上的,因为其中的一个加数32在D选项中改成23了。但是定势会使大部分学生想当然地连上了。也会有少数学生能及时发现问题。放手让学生自己去发现,去争论,去甄别。】

  集体订正后,教师小结。

  2、拓展练习

  水果店运进四筐苹果,分别重45千克、63千克、37千克、55千克,水果店这次一共运进多少千克苹果?

  四、课堂小结

  原来巧用运算律还能使一些计算更简便呢!这就是我们下一节课继续研究!

【加法交换律和结合律教案】相关文章:

《加法交换律和结合律》教学设计04-15

加法交换律和结合律的评课稿07-02

小学数学加法交换律和结合律的教学设计07-04

《加法交换律和乘法交换律》教材设计07-02

乘法交换律和结合律课后反思06-24

《乘法结合律和交换律》教学设计06-08

乘法结合律和交换律优秀记叙设计06-28

小学数学人教版加法的意义和加法交换律教案06-29

《乘法交换律结合律》教学实录06-25

加法交换律课堂实录07-02