圆锥的体积教学设计

时间:2024-07-17 06:10:32 品才网 我要投稿

(优选)圆锥的体积教学设计11篇

  在教学工作者实际的教学活动中,时常需要准备好教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。那么教学设计应该怎么写才合适呢?下面是小编帮大家整理的圆锥的体积教学设计,欢迎大家分享。

(优选)圆锥的体积教学设计11篇

圆锥的体积教学设计 篇1

  教学目标:

  1、通过实验发现等底等高的圆柱和圆锥体积之间的关系,从而得出体积的计算公式,能运用公式解答有关实际问题。

  2、通过动手操作参与实验,发现等底等高的圆柱和圆锥体积之间的关系,并通过猜想、探索和发现的过程,推导出圆锥的体积公式。

  3、通过实验,引导学生探索知识的内在联系,渗透转化思想,感受数学方法的内在魅力,激发学生参加探索的兴趣。

  教学重点:

  通过实验的方法,得到计算圆锥的'体积。

  教学难点:

  运用圆锥的体积公式进行正确地计算。

  教学准备:

  等底等高的圆柱和圆锥容器模型各一个。

  教学过程:

  一、复习导入

  师:同学们,请看大屏幕(课件出示圆柱削成最大圆锥)。

  1、圆柱体积的计算公式是什么? (指名学生回答)

  2、圆锥有什么特征?

  同学们,圆柱的体积我们已经知道怎么求,那与它等底等高的圆锥的体积同学们知道怎么求吗?让我们一同走进圆锥的体积与等底等高的圆柱体体积有什么关系的知识课堂吧!(板书:圆锥的体积)

  二、探究新知

  课件出示等底等高的圆柱和圆锥

  1、引导学生观察:这个圆柱和圆锥有什么相同的地方?

  学生回答:它们是等底等高的。

  猜想:

  (1)、你认为圆锥体积的大小与它的什么有关?

  (2)、你认为圆锥的体积和什么图形的体积关系最密切?猜一猜它们的体积有什么关系?

  2、学生动手操作实验

  (1)、用圆锥装满水(要装满但不能溢出来)往圆柱倒,倒几次才把圆柱倒满?

  (2)、通过实验,你发现了什么?

  小结:通过实验我们发现圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是与它等底等高圆柱体积的三分之一 。

  3、教师课件边演示边叙述:现在圆锥和圆柱里都是空的。看看圆柱和圆锥有什么相同的地方?(等底等高)请同学们注意观察, 用圆锥装满水往圆柱里倒,倒几次才把圆柱倒满?

  问:把圆柱装满一共倒了几次?

  生:3次。

  师:这说明了什么?

  生:这说明圆锥的体积是和它等底等高的圆柱体积的三分之一。(板书:圆锥的体积= 1/3×圆柱体积 )

  师:圆柱的体积等于什么?

  生:等于“底面积×高”。

  师:那么,圆锥的体积可以怎样表示呢? (板书:圆锥的体积= 1/3×底面积×高)

  师:用字母应该怎样表示? (V=1/3sh)

  师:在这个公式里你觉得哪里最应该注意?

  三、教学试一试

  一个圆柱形零件,底面积是170平方厘米,高是12厘米。这个零件的体积是多少立方厘米?

  四、巩固练习

  1、计算圆锥的体积

  2、判一判

  3、算一算

  4、拓展延伸

  五、总结

  通过这节课的学习,你有什么收获呢?

  六、板书:

  圆锥的体积=圆柱的体积×1/3

  圆锥的体积=底面积×高×1/3

  用字母表示V=1/3sh

圆锥的体积教学设计 篇2

  教学目标:

  1、使学生初步掌握圆锥体积的计算公式,并通过运用公式正确地计算圆锥的体积,发展学生的空间观念。

  2、提高学生实际应用的能力。

  3、培养学生乐于学习,勇于探索的精神。

  重点、难点:

  圆锥体积公式的推导过程

  教具:

  等底等高的圆柱和圆锥各一个,比圆柱体积多的大米、水。

  教学过程:

  一、创设情境,引导猜想

  1.师:同学们,在暑假我和家人们一起游玩,南方的天气太热了,于是我们来到了一家冷饮店,看!

  (出示大屏幕)

  问题一:你喜欢哪种冰淇淋?为什么?(指生答)

  问题二:这些冰淇淋的上面近似于我们已学过的哪种图形(圆锥)

  问题三:如果它们的价钱相同,你认为应该买哪种最划算?为什么?

  今天,我们一起来探究“圆锥的体积”

  2.板书:圆锥的体积。

  二、大胆猜想,实验探究

  1.观察验证两种物体的联系。

  教师拿出等底等高的圆柱和圆锥容器展示给学生。

  ①提问学生:仔细观察,你能发现它们有什么相同的地方吗?谁能出来验证一下?

  ②板书:等底等高。

  ③既然这两个物体是等底等高的,那么就跟求圆柱体积一样,就用“等面积×高”来求圆锥的体积行不行?(生回答,进行验证)

  2、大胆猜想

  教师①把圆锥体套在圆柱体里(证明圆锥的体积小)请你估计一下,这两个形体的'体积大小有什么样的倍数关系?(指名回答)

  ②这些都是同学们的猜想,现在我们共同探讨,它们之间的体积关系,验证我们猜想,不过在实验前先阅读实验要求。

  3、动手实践,得出结论

  ①课件出示实验要求,指生谈。

  ②思考操作时应注意什么?

  ③指名实验。

  ④汇报:通过做实验,你们发现了圆柱和圆锥有什么关系?

  ⑤小结:同学们得出这个结论非常重要,验证发现圆柱的体积是等底等高圆锥体积的3倍。

  ⑥生根据刚才实验,总结圆锥的体积公式(指名发言)师板书。

  三、合作探究

  探究任意一个圆柱体积是任意一个圆锥体育的3倍。

  ①示探究卡。

  ②指生读探究卡要求。

  ③组内讨论,汇报结果。

  四、主动巩固,解决实际问题

  1、自主学习书34页中例3练习题。

  ①指生读题,思考已知条件,未知条件,求什么?

  ②学生计算结果。

  ③汇报

  2、基本练习(大屏幕出示)

  ①填空

  ②判断

  指生回答,说明所填答案原因。

  五、课后延伸

  学生回忆所学的教学知识中有哪些地方用到了转化的思想。

  六、教师总结

  板书:圆锥的体积

  等底等高 V圆锥= V圆柱=- sh

圆锥的体积教学设计 篇3

  教学目标:

  1、通过动手操作实验,推导出圆锥体体积的计算公式。

  2、理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题。

  3、通过学生动脑、动手,培养学生的观察、分析的综合能力。

  教具准备:

  等底等高的圆柱体和圆锥体5套,大小不同的圆柱体和圆锥体5套、水槽5个,以及多媒体辅助教学课件。

  教学过程设计:

  一、复习旧知,做好铺垫。

  1、认识圆柱(课件演示),并说出怎样计算圆柱的体积?(屏幕出示:圆柱体的体积=底面积×高)

  2、口算下列圆柱的体积。

  (1)底面积是5平方厘米,高 6 厘米,体积 = ?

  (2)底面半径是 2 分米,高10分米,体积 = ?

  (3)底面直径是 6 分米,高10分米,体积 = ?

  3、认识圆锥(课件演示),并说出有什么特征?

  二、沟通知识、探索新知。

  教师导入:同学们,我们已经认识了圆锥,掌握了它的特征,但是,对于圆锥的学习我们不能只停留在认识上,有关圆锥的知识还有很多有待于我们去学习、去探究。这节课我们就来研究“圆锥的体积”。(板书课题)

  1、探讨圆锥的体积计算公式。

  教师:怎样推导圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积计算公式的?

  学生回答,教师板书:

  圆柱------(转化)------长方体

  圆柱体积计算公式--------(推导)长方体体积计算公式

  教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较后,再用课件演示。

  (1)提问学生:你发现到什么?(圆柱和圆锥的底和高有什么关系?)

  (学生得出:底面积相等,高也相等。)

  教师:底面积相等,高也相等,用数学语言说就叫“等底等高”。

  (板书:等底等高)

  (2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?

  (不行,因为圆锥体的体积小)

  教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)

  用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。

  (3)学生分组做实验,并借助课件演示。

  (教师深入小组中了解活动情况,对个别小组予以适当的帮助。)

  a、谁来汇报一下,你们组是怎样做实验的?

  b、你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?

  (学生发言:圆柱体的体积是圆锥体体积的3倍)

  教师:同学们得出这个结论非常重要,其他组也是这样的吗?

  学生回答后,教师用教学课件演示实验的全过程,并启发学生在小组内有条理地表述圆锥体体积计算公式的推导过程。

  (板书圆锥体体积计算公式)

  教师:我们学过用字母表示数,谁来把这个公式用字母表示一下?(指名发言,板书)

  (4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?

  学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的 。(教师拿起一个小圆锥、一个大圆柱)如果老师在这个大圆锥体里装满了水,往这个小圆柱体里倒,需要倒三次才能倒满吗?(不需要)

  为什么你们做实验的圆锥体里装满了水往圆柱体里倒,要倒三次才能倒满呢?(因为是等底等高的圆柱体和圆锥体。)

  (教师给体积公式与“等底等高”四个字上连线。)

  进一步完善体积计算公式:

  圆锥的体积=等底等高的圆柱体体积×1/3

  =底面积 × 高×1/3

  V = 1/3Sh

  教师:现在我们得到的这个结论就更完整了。(指名反复叙述公式。)

  课件出示:

  想一想,讨论一下:?

  (1)通过刚才的实验,你发现了什么?

  (2)要求圆锥的体积必须知道什么?

  学生后讨论回答。

  三、 应用求体积、解决问题。

  1、口答。

  (1)有一个圆柱的`体积是27立方分米,与它等底等高的圆锥体积是多少?

  (2)有一个圆锥的体积是9立方分米,与它等底等高的圆柱体积是多少?

  2、出示例题,学生读题,理解题意,自己解决问题。

  例1、一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

  a、 学生完成后,进行小组交流。

  b 、 你是怎样想的和怎样解决问题的。(提问学生多人)

  c 、 教师板书:

  1/3×19×12=76(立方厘米)

  答:它的体积是76立方厘米

  3 、练习题。

  一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)

  我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。

  4、出示例2:要求学生自己读题,理解题意。

  在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)

  (1)提问:从题目中你知道了什么?

  (2)学生独立完成后教师提问,并回答学生的质疑:3.14×(4÷2)2×1.2× 1/3 表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?

  5、比较:例1和例2有什么不同的地方?

  (1)例1直接告诉了我们底面积,而例2没有直接告诉,要求我们先求出底面积,再求出圆锥体积;

  (2)例1 是直接求体积,例2是求出体积后再求重量。

圆锥的体积教学设计 篇4

  教学目标:

  1.在理解圆锥体积公式的基础上,能运用公式解决有关实际问题,加深对知识的理 解。

  2.培养学生观察、实践能力。

  3.使学生在解决实际问题中感受数学与生活的密切联系。

  教学重、难点:

  结合实际问题运用所学的知识

  教学理念:

  1.数学源于生活,高于生活。

  2.学生动手实践,自主学习与合作交流相结合

  教学设计:

  一、回顾旧知:

  1.圆锥的体积公式是什么? S、h各表示什么?

  2.求圆锥的体积需要知道什么条件?

  3.还知道哪些条件也能计算出圆锥的体积?怎样计算?

  投影出示:

  (1)S = 10,h = 6 V = ?

  (2)r = 3,h = 10 V = ?

  (3)V = 9.42,h = 3 S = ?

  二、运用知识,解决实际问题

  1.(投影出示例2:一堆小麦图)师:有这样一堆小麦,你知道它的体积是多少吗? 怎么办呢?

  2.这些数据都是可以测量的。现在给你数据:高为1.2米,底面直径为4米

  (1)麦堆的底面积:__________________

  (2)麦堆的体积:____________________

  3.知道了体积,这堆小麦大约有多少重能知道吗?(每立方米小麦约735千克)(得 数保留整千克数)

  4.一个圆锥形沙堆,占地面积为3.14平方米,高1.5米。

  (1)沙堆的体积是多少平方 米?

  (2)如果每立方米沙约重1.6吨,这些沙子共重多少吨?(结果保留一位小数)

  5.用一根底面直径2分米,高10分米的圆柱体木料,削成一个大的圆锥,要削去多 少立方分米的木料?

  (1)(出示图)什么情况下削出的圆锥是大的?为什么?

  (2)削去的木料占原来木料的几分之几?

  (3)如果这是一块长4分米,宽2分米,高1分米的长方体木料,又在什么情况下削出 的圆锥是大的呢?

  三、综合练习

  1.一个圆柱的底面积为81平方厘米,高12厘米,和它等体积等底的'圆锥高为( )厘米;和它等体积等高的圆锥的底面积为( )厘米。

  2.将一个体积为16立方分米的圆锥形容器盛满水,倒入一个底面积为10平方分米的 圆柱体容器中,水面的高度是( )分米

  3.一个圆柱和一个圆锥的体积相等,如果圆柱的高是圆锥的4/5,那么圆柱的底面积是 圆锥的几分之几?

圆锥的体积教学设计 篇5

  教学目标:

  1、掌握圆锥的体积公式,能运用公式进行计算。

  2、在观察、实验、讨论等活动中探索圆锥的体积公式。

  3、体验数学与生活的密切联系,自觉养成合作交流与独立思考的良好习惯。

  教学重点:

  1、使学生探索出圆锥的体积公式。

  2、初步掌握圆锥体积的计算方法并解决一些实际问题。

  教学难点:

  探索圆锥体积的计算方法和推导过程。

  教学过程:

  一、情境导入

  1、课件出示图片

  引导学生指图说出冰淇淋形状像我们学过的什么几何体?圆锥

  2、导入:同学们,冰淇淋形状像我们学过的圆锥体,你喜欢吃冰淇淋吗?那么冰淇淋体积有多大呢?这节课我们就来研究这个问题.(板书:圆锥的体积)

  二、探究新知:

  (一)圆锥的体积公式探讨

  师:大家猜想,探求圆锥的体积,会和我们学习过的那种形体有关系?(圆柱)为什么?底面都是圆形

  师:我们的猜想是真的吗?圆柱和圆锥的体积之间有没有关系?有什么样的关系?让我们来做一个实验来验证一下吧!

  出示圆柱和圆锥图片,演示等底等高

  师:今天用来试验的教具有点特殊,他们的底相等,高也相等。

  教师引导提出要求:

  下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,用圆锥把圆柱装满需要几次,看它们之间有什么关系,并想一想通过实验你发现了什么?

  学生分组实验

  每小组推举一名学生汇报实验结果:

  当圆柱和圆锥的`底面积相等,高相等时,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.(教师多媒体演示)

  所以我们的结论是:

  圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的.

  3、教师出示两个大小悬殊的圆锥和圆柱,请同学猜测,圆锥的体积是否还是圆柱的三分之一?(进一步强调等底等高,教师演示)

  4、师生共同总结结论:圆锥的体积等于和它等底等高的圆柱体积的1/3。

  如果用用v表示圆锥的体积,s表示圆锥的底面积,h表示圆锥的高,圆锥的体积公式可以表示为:v= 1/3 sh

  (二)简单应用 尝试解答

  判断:

  1、圆柱的体积是圆锥体积的3倍。( )

  2、圆柱的体积大于与它等底等高的圆锥的体积。( )

  3、圆锥的高是圆柱的高的3倍,它们的体积一定相等。( )

  填空:

  1、一个圆柱的体积是75.36m,与它等底等高的圆锥的体积是( )m。

  2、一个圆锥的体积是141.3cm,与它等底等高的圆柱的体积是( )cm。

  例题:(出示课件)

  工地上有一些沙子,堆起来近似于一个圆锥,这堆沙子大约多少立方米?(得数保留两位小数。)

  (生独立列式计算,小组交流,是指名组长出示答案)

  巩固练习,运用拓展

  一、求下图中圆锥体积。(略)

  二、 一堆煤成圆锥形,底面半径是1.5m,高是1.1m。这堆煤的体积是多少?如果每立方米的煤约重1.4吨,这堆煤约有多少吨?(得数保留整数。)

  三、提高拓展

  有一根底面直径是6厘米,长是15厘米的圆柱形钢材,要把它削成与它等底等高的圆锥形零件。圆锥的体积是多少立方厘米?要削去钢材多少立方厘米?

  总结:你学到了什么?

  板书设计:

  圆锥的体积

  等底等高 v锥=1/3v柱=1/3sh

  教学内容:

  本节教材是人教版六年级数学下册第二单元圆锥的体积部分,课本第25-26页。这部分内容是在学生已经认识圆锥的特征和会圆柱体积计算的基础上学习的。学习过程中要引导学生探索并掌握圆锥的体积公式。然后能够根据公式及变形公式进行计算。

圆锥的体积教学设计 篇6

  教学内容:

  九年义务教育六年制小学数学第十二册P32页。

  教学目标:

  1、通过练习,使学生进一步理解和掌握圆锥体积公式,能运用公式正确迅速地计算圆锥的体积。

  2、通过练习,使学生进一步深刻理解圆柱和圆锥体积之间的关系。

  3、进一步培养学生将所学知识运用和服务于生活的能力。

  教学重点:

  灵活运用圆柱圆锥的有关知识解决实际问题。

  教学难点:

  同教学难点。

  设计理念:

  练习的过程是学生将所学知识内化、升华的过程,练习过程中既有基础知识的合理铺垫,又有不同程度的提高,练习的内容有明显的阶梯性。力求使不同层次的学生都学有收获。

  教学步骤、教师活动、学生活动

  一、复习铺垫、内化知识。

  1. 圆锥体的体积公式是什么?我们是如何推导的?

  2.圆柱和圆锥体积相互关系填空,加深对圆柱和圆锥相互关系的理解。

  (1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是()立方厘米。

  (2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是()立方厘米。

  (3)一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。

  3.求下列圆锥体的体积。

  (1)底面半径4厘米,高6厘米。

  (2)底面直径6分米,高8厘米。

  (3)底面周长31.4厘米.高12厘米。

  4、教师根据学生练习中存在的问题,集体评讲。同座位的同学先说一说圆锥体积公式的推导过程。

  学生独立练习,互相批改,指出问题。

  学生交流一下这几题在解题时要注意什么?

  二、丰富拓展、延伸练习。

  1.拓展练习:

  (1)把一个圆柱体木料削成一个最大的圆锥体木料,圆锥的体积占圆柱体的几分之几?削去的'部分占圆柱体的几分之几?

  (2)一个圆柱体比它等底等高的圆锥体积大48立方厘米,圆柱体和圆锥体的体积各是多少?

  2.完成31页第5题。讨论下列问题:

  (1)圆柱和圆锥体积相等、底面积也相等,圆柱的高和圆锥的高有什么关系?

  (2)圆柱和圆锥体积相等、高也相等,圆柱的底面积和圆锥的底面积有什么关系?

  3.分组讨论:圆柱的底面半径是圆锥的2倍,圆锥的高是圆柱的高的2倍,圆柱和圆锥的体积之间有什么倍数关系?

  学生分组讨论,教师参与其中,以有疑问的方式参与讨论。

  三、充分提高,全面升华。

  1.展示一个圆锥形的沙堆,小组讨论一下用什么方法可以测量出它的`体积。

  2.教师给每一组一小袋米。让学生在桌子上堆成一个近似的圆锥体,通过合作测量的形式求出它的体积。

  3.讨论练习八蒙古包所占空间的大小的方法。

  (1)蒙古包是由哪几个部分组成的?

  (2)上部的圆锥和下部的圆柱有哪些相同的地方,有哪些不同的地方?

  (3)同学们能独立地求出蒙古包所占的空间的大小吗?请试一试。

  4.交流一下本节课的收获。

  学生分组讨论后动手实践并计算。

  学生先交流。

  四、全课总结,内化知识。

  1.提问:

  (1)同学们掌握了圆锥体的哪些知识?

  (2)你用圆锥体的体积的有关知识解决现实生活中的哪些问题?

  2.学有余力的同学思考38页思考题。

  3.作业:练习八6、7、8

  学生独立练习。

圆锥的体积教学设计 篇7

  教学内容:

  《圆锥的体积》是九年义务教育六年制小学数学第十一册第三单元的内容。

  教学目标:

  1、通过让学生小组合作探究,利用不同的方法测量出圆锥的体积。体验到计算圆锥体积的计算公式v=1/3sh是最简便的方法。

  2、锻炼学生的操作能力,估算能力,评价能力,更好的发展他们的创新能力。

  3、培养学生的合作意识及主动探索知识的精神。

  教学重点:

  让学生自己亲身体验到计算圆锥体积的不同方法。从而理解计算公式v=1/3sh,并感受到计算公式的简便。

  教学难点:

  能利用不同方法计算不同物体的体积。知识的活学活用。

  教学准备:

  1、个学生一组,每组各有量杯;量桶;一升的容器;等底等高的圆柱与圆锥器皿;大米,沙子或水;1立方厘米的小方块若干。

  2、教学软件。

  教学流程:

  一、创设情景,激趣引新。

  1、首先教师手中拿一圆柱体问:“同学们,老师想知道这个圆柱体的体积你们能帮助我吗?”

  (学生踊跃举手说明。可以先测量出圆柱的半径与高。再用圆周率乘半径的平方得到底面积,最后乘以高就可以了。)

  2、教师表示赞同,并抓住这一契机拿出于刚才圆柱等底等高的圆锥,问:“那老师这里还有一个圆锥体,它的体积应该怎样计算呢?你们知道吗?”(学生齐答不)那你们想不想研究呢?(学生齐答想)好,下面我们就一起来研究圆锥的体积该怎样计算。

  〈设计意图:通过以旧引新,不仅让学生感受到圆锥与圆柱的联系,而且还能体验得到新知的亲切。从而产生学习新知的欲望。〉

  二、小组合作,探究学习。

  1、动手操作,测量圆锥体的体积。

  要求:每组同学,利用桌面上的工具(量杯,量桶,与圆锥等底等高圆柱容器,大米,沙子,水,1立方分米小方块)测量出自己组内的圆锥体的体积。测量物体是容器的厚度不计。

  〈全体学生在动手操作,互相商量解决问题的办法。教师巡回指导。课堂呈现小组探究学习的热烈场面。〉

  3、分组汇报不同的方法。

  〈学生在汇报时可边讲解边示范〉

  方法一:可以利用量杯。首先把圆锥体容器内装满水,然后把它倒入量杯内,我们看到水面的刻度就是水的体积也就是圆锥体的体积。

  方法二:利用手中的一立方厘米的小木块进行估算。

  方法三:受《曹冲称象》的启示。利用一生的容器。把它装满水后将圆锥体放入,溢出水后拿出圆锥体。这时看容器空出来的地方为长方体,用一立方分米减去长方体的体积就可以得到圆锥体的体积了。

  方法四:把圆锥体内装满大米、沙子或水,然后将它到入与它等底等高的`圆柱体容器里。发现到了3次正好到慢。也就是说,圆锥体的体积等于与它等底等高的圆柱体的三分之一。用字母表示为:v=1/3sh

  〈设计意图:通过讨论研究和动手操作,发展学生的'创新能力,和解决实际问题的能力。〉

  (1)在讲解第四个方法时,教师可以向学生质疑,在操作此过程时有一个非常重要的前提条件是什么?为什么圆锥体的体积等于与它等底等高圆柱体体积的三分之一?

  (2)学生再次在小组内操作探究。

  (3)汇报结论。

  (4)微机演示。

  当等底不等高时,当等高不等底时,当底和高都不相等时,出现的结果是怎样的。

  〈设计意图:通过学生探究与微机演示,使学生直观的感受圆锥体与圆柱体之间关系。加深对圆锥体体积计算公式的理解。〉

  4、评价以上各种办法

  同学们的结论是用公式计算比较方便。

  三、解决实际问题

  (问题一)

  1、各小组量一量,算一算自己组内的圆锥体的体积。(测量,计算时都要保留整数)

  2、汇报结果。

  先测量出圆锥体的直径,算出底面积。再测量出高,算出它的体积。算式:1/3x[3.14x(10/2)x10]≈262立方厘米(忽略厚度,即把溶剂可看作体积)

  (问题二)

  1、现知道手中的圆锥体每立方厘米约装0.9克大米,计算这个圆锥体容器可装多少克大米?

  2、汇报结果。

  用每立方厘米装大米的克数乘圆锥的体积。算式:0.9x262≈236克

  3、验证计算结果

  用称称一称,比较一下结果。

  4、讨论两次结果为什么不同。

  由于测量时厚度不计,计算时是近似值。都存在误差。

  〈设计意图:通过测量,计算等环节,发展学生的应用意识及估算的能力。〉

  (问题三)

  利用圆锥体积公式计算。

  (1)r=2cm h=6cm v=?

  (2)d=6m h=5mv=?

  (问题四)

  计算不规则物体体积或容积。(直说出计算的方法即可)

  1、用什么方法计算出葫芦能装多少水?

  2、胡萝卜的体积怎样计算?

  3、不规则的零件体积计算?

  〈设计意图:结合生活实际让学生感受到数学与生活的联系。及解决实际问题的不同方法及策略,培养创新能力。〉

  四、总结全课

  说说你的收获,鼓励学生学习知识要活学活用,大胆动脑,勇于创新。

圆锥的体积教学设计 篇8

  一、教学目标

  1、知识与技能

  理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

  2、过程与方法

  通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。

  3、情感态度与价值观

  渗透知识是互相转化的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。

  二、教学重、难点

  重点:掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。

  难点:理解圆锥体积公式的推导过程。

  三、教具学具

  不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。

  四、教学流程

  (一)创设情境,提出问题

  师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?

  生:我选择底面最大的;

  生:我选择高是最高的;

  生:我选择介于二者之间的。

  师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?

  生:只要求出冰淇淋的体积就可以了。

  师:冰淇淋是个什么形状?(圆锥体)

  生:你会求吗?

  师:通过这节课的学习,相信这个问题就很容易解答了。下面我们一起来研究圆锥的体积。并板书课题:圆锥的体积。

  (二)设疑激趣,探求新知

  师:那么你能想办法求出圆锥的体积吗?

  (学生猜想求圆锥体积的方法。)

  生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。

  师:如果这样,你觉得行吗?

  教师根据学生的回答做出最后的评价;

  生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?

  师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?

  小组中大家商量。

  生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。

  师:此种方法是否可行?

  学生进行评价。

  师:哪个小组还有更好的办法?

  生:我们组认为:圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。如果将圆锥转化成圆柱,就更容易进行研究。)

  师:既然大家都认为圆锥与圆柱的联系最为密切,请各组先拿出学具袋的圆锥与圆柱,观察比较他们的底与高的大小关系。

  1、各小组进行观察讨论。

  2、各小组进行交流,教师做适当的板书。

  通过学生的交流出现以下几种情况:一是圆柱与圆锥等底不等高;二是圆柱与圆锥等高不等底;三是圆柱与圆锥不等底不等高;四是圆柱与圆锥等底等高。

  3、师启发谈话:现在我们面前摆了这么多的圆柱和圆锥,我们是否有必要把每一种情况都进行研究?能否找到一种既简便又容易操作且能代表所有圆柱和圆锥关系的一组呢?(小组讨论)

  4、小组交流,在此环节着重让学生说出选择等底等高的圆锥体与圆柱体进行探究的理由。

  师:我们大家一致认为应该选择等底等高的一组,那么我们就跟求圆柱体的体积一样,就用底面积高来表示圆锥体的体积行不行?为什么?

  师:圆锥体的体积小,那你猜测一下这两个形体的体积的大小有什么样的关系?

  生:大约是圆柱的一半。

  生:

  师:到底谁的意见正确呢?

  师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的圆锥与圆柱,共同探讨它们之间的体积关系验证我们的猜想,不过在实验前先阅读实验要求,(课件演示)只有目标明确,才能更好的合作。开始吧!

  要求:1、实验材料,任选沙、米、水中的一种。

  2、实验方法可选择用圆锥向圆柱里倒,到满为止;或用圆柱向圆锥里倒,到空为止。

  (生进行实验操作、小组交流)

  师:1、谁来汇报一下,你们组是怎样做实验的?

  2、通过做实验,你们发现它们有什么关系?

  生:我们利用空圆柱装满水到入空圆锥,三次倒完。圆柱的体积是等底等高圆锥体积的三倍。

  生:我们利用空圆锥装满米到入空圆柱,三次倒满。圆锥的体积是等底等高圆柱的体积的1/3。)

  师:同学们得出这个结论非常重要,其他组也是这样的`吗?生略

  师:请看大屏幕,看数学小博士是怎样做的?(课件演示)

  齐读结论:

  师:你能根据刚才我们的实验和课件演示的情况,也给圆锥的体积写一个公式?

  (小组讨论,得出圆锥的体积公式,得到以下公式:圆柱体积3=圆锥体积,则v圆锥=sh3即v圆锥=1/3sh

  师:同学们刚才我们得到了圆锥的体积公式,(请看课件)你能求出三种冰淇淋的体积?

  (噢!三种冰淇淋的体积原来一样大)

  五、联系生活,拓展运用

  本练习共有三个层次:

  1、基本练习

  (1)判断对错,并说明理由。

  圆柱的体积相当于圆锥体积的3倍。( )

  一个圆柱木料,把它加工成最大的圆锥,削去的部分的体积和圆锥的体积比是( )

  一个圆柱和一个圆锥等底等高体积相差21立方厘米,圆锥的体积是7立方厘米。( )

  (2)计算下面圆锥的体积。(单位:厘米)

  s=25.12 h=2.5

  r=4, h=6

  2、变形练习

  出示学校沙堆:我班数学小组的同学利用课余时间测量了那堆沙子,

  得到了以下信息:底面半径:2米,底面直径4米,底面周长12.56米,底面积:12.56平方米,高1.2米,

  (1)、你能根据这些信息,用不同的方法计算出这堆沙子的体积吗?

  (2)、找一找这些计算方法有什么共同的特点? v锥=1/3sh

  (3)、准备把这堆沙填在一个长3米,宽1.5米的沙坑里,请同学们算一算能填多深?

  3、拓展练习

  一个近似圆锥形的煤堆,测得它的底面周长是31.4米,高是2.4米。如果每立方米煤重1.4吨,这堆煤大约重多少吨?

  活动五:整理归纳,回顾体验

  (通过小结展示学生个性,学生在学习中的自我体验,使孩子情感态度,价值观得到升华。)

圆锥的体积教学设计 篇9

  教学内容:

  教材第31--32页,练习八第4一10题。

  教学目标:

  使学生进—步掌握圆锥的体积计算方法,能根据不同的条件计算圆锥的体积,能应用圆锥体积解决—些简单的实际问题;

  教学重点:

  进—步掌握圆锥的体积计算方法。

  教学难点:

  根据不同的条件计算圆锥的体积。

  预习作业:

  1、一个圆锥的体积是与它等底等高的圆柱体积的();,;

  2、圆柱的体积是它等底等高的圆锥体积的();

  3、练习八第4题、第6题、第7题和第8题

  教学过程:

  一、预习效果检测

  1、一个圆锥的体积是与它等底等高的圆柱体积的();

  2、圆柱的体积是它等底等高的圆锥体积的();

  3、把一个圆柱削成最大的圆锥,削去部分的体积相当于圆柱的相当于圆锥的()倍。

  二、基本练习

  1、提问:

  1)同学们想一想:圆锥的体积怎样计算?

  2)口答下列各圆锥的体积。

  ①底面积3平方分米,高2分米。

  ②底面积4平方厘米,高4.5厘米。

  2、完成练习八的第4题。

  让学生仔细读题,并独立完成习题。

  引导同学相互讨论,并说出解题思路。

  3、完成练习八的第5题。

  引导学生仔细观察题中的图形,并凭自己的感觉猜想哪个圆柱的体积与圆锥的体积相等。

  教师提醒学生:底面直径之间的倍数关系并不等于底面面积之间的倍数关系。请学生起来回答猜想的答案,给学生几分钟的时间,让学生利用已知的条件进行计算验证。

  老师和学生一起找出正确的答案是:底面直径9厘米,高4厘米的圆柱。

  4、完成练习八的第6题。

  让学生仔细读题,并完成第一小题。请学生起来说出解题的经过和步骤。老师根据学生的发言总结:能削成最大的圆锥应是与这个圆形状的木料等底等高。

  让学生在小组内讨论第(2)小题。

  让学生自由发言,并板书讨论出的'有关数学问题再让大家起进行解决,比如:削去的木料体积是多少?

  削去的木料体积是圆锥体积的几倍?

  削去的木料体积是整个木料的几分之几?

  5、完成练习八的第7、8、9题。个别板演,全班齐练,小组讨论,集体评讲与小结。

  6、完成练习八的第10题。引导学生合作学习,并在小组内对测量和计算的方法进行讨论,选择最优方法,让学生在课后进行实验。

  7、完成思考题。

  让学生仔细读题并在小组内讨论解题的方法。请学生起来说出小组讨论的结果,老师对学生的发言进行总结,并引导学生进行如下的推想:当圆锥的高是4.2厘米时,如果圆柱的高也是4.2厘米时,那么圆锥与圆柱的体积比是1:3;因此圆柱的高必须是4.2厘米的2倍,也就是8.4厘米。同理,圆柱的高是4.2厘米时,圆锥的高必须是4.2厘米的一半,也就是2.1厘米。

  课堂小结

  通过刚才的练习,想必大家对于圆锥体积公式的运用有了一定的了解,对于一些细节问题都能够很好的注意,你能告诉大家你学习的收获吗?让学生自由发言,老师补充总结。

  三、当堂达标检测

  1、《补充习题》相关练习;

  2、反馈纠正。

圆锥的体积教学设计 篇10

  【教学目标】

  1、使学生探索并初步掌握圆锥体积的计算方法和推导过程;

  2、使学生会应用公式计算圆锥的体积并解决一些实际问题;

  3、提高学生实践操作、观察比较、抽象概括的能力,发展空间观念;

  4、向学生渗透知识间可以相互转化的辩证唯物主义思想,学习将新知识转化为原有知识的方法,使学生在经历中获得成功的体验,体验数学与生活的联系。

  【教学重点】

  使学生初步掌握圆锥体积的计算方法并解决一些实际问题。

  【教学难点】

  探索圆锥体积的计算方法和推导过程。

  【教具准备】

  1、多媒体课件。

  2、等底等高、等底不等高、等高不等底的圆锥和圆柱,沙、米,实验报告单;

  【教学过程】

  一、创设情境,发现问题

  1、故事引入:爱迪生是一位伟大的发明家,他的一生有1000多项发明,当人们都说他是天才的时候,他却谦虚的说:天才=99%的汗水和1%的灵感。孩子们,请记住这句话吧,你的未来一定会很出色的哦。今天这节课我们就从爱迪生的一个小故事开始吧,有一天爱迪生让他的助手测量一个灯泡的体积,由于灯泡的形状很不规则,助手苦苦思考,还是没有答案,爱迪生用了一个非常巧妙的办法他将灯泡里装满水,然后将水倒入量筒中(教师拿出圆柱体量筒作演示),就得出了灯泡的体积。你能说说爱迪生这样做的理由吗?

  师:因为圆柱体的体积等于底面积高。(板书)

  2、提出问题,明确方向。

  爱迪生帮他的助手解决了这个问题,现在请同学们帮打谷场上的农民伯伯们一个忙(用多媒体显示一堆圆锥体的小麦堆)请大家算算这堆小麦的体积。看看谁是未来的爱迪生

  生:利用爱迪生的方法,利用一个圆柱体或长方体大桶来装这堆谷子,就能求出这堆谷子的体积了。

  师:长方体的体积公式是什么呢?

  生:长宽高

  师:非常棒,其实呀不管是爱迪生,还是未来的爱迪生xx都是运用转化这一重要的数学思想来解决新的问题,今天我们同样能不能用转化的数学思想找到一种简单而又科学合理的方法计算出圆锥的体积的计算公式呢?

  板书:圆锥体积

  二、讨论问题,提出方案

  1、现在请同桌互相讨论一下,可以采取什么办法找到手中圆锥的体积。比一比,哪个学习小组的方法多,方法好。

  各小组汇报:

  把圆锥投入装了水的长方体、正方体或圆柱体的容器中,求出上升部分水的体积。

  另一种办法就是将圆锥装满水后倒入圆柱体里,求出水的体积就可求得圆锥的体积。

  师:我们认识了圆锥的特征,知道圆锥的底面是一个圆形,那孩子们大胆猜测:圆锥的体积可能和什么图形的体积联系最为密切。(圆柱体积)

  师:为什么呢? 刚才有的同学猜测圆锥的体积和圆柱有关系,真的有关系吗?如果有关系,又有什么关系呢

  师:怎样才能验证你们的猜想呢?

  请小组合作,利用手中的学具,动手实验,看看圆锥的体积到底和圆柱有什么关系?

  提出实验要求:

  1、设计你们的实验方案。

  2、小组分工明确。谁做实验,谁记录实验结果。

  3、说说你们的发现。

  特别强调不要浪费一粒米哦,要知道:锄禾日当午汗滴禾下土。

  三、动手实验,解决问题

  (1)学生分组实验,并填写下表(教师有目的地给两个组不等底不等高的圆柱和圆锥学具,给两个组等底等高的圆柱和圆锥学具):

  (2)小组合作实验,并填写实验报告单。

  组别

  物体名称

  操作过程

  物体名称

  圆锥

  装米粒(水)、装( )次装满

  空圆柱

  结论:

  (3)汇报结果,实物投影展示实验报告单。

  请xx小组来回报一下你们的实验过程,说说你们的发现。

  结论1:圆锥的体积v等于和它等底等高圆柱体积的三分之一。

  结论2:等底不等高的圆锥体与圆柱体,圆锥的体积是圆柱体积的二分之一。

  结论3:等高不等底的圆锥体与圆柱体,圆锥的体积是圆柱体积的四分之一。

  结论4: 圆柱的体积正好是圆锥体积的3倍。

  结论5: 圆柱的体积是等底等高的圆锥体积的3倍。

  师:同学们实验的结论各不相同,到底哪组的结论对呢?

  师:我们先来看得出三分之一或3倍关系的这几个小组;请小组代表说说你们是怎样通过实验得出这一结论的?

  (请他们拿出实验用的器材,自己比划、验证这个结论。突出他们小组的圆柱和圆锥是等底等高的)

  师:其他小组得出的结论不同,是不是由于实验过程或结论有错误呢?我们也请小组代表说说你们的看法。

  (生说明他们的过程和结论都是对的,只是他们的圆锥和圆柱不是即等底又等高的)。

  师:各组实验方法一样为什么所得的结果不一样呢?每个每个小组都说的清清楚楚明明白白,同学们的结论都没有错,可有的得出圆锥的体积是圆柱的三分之一,有的是二分之一,问题到底出在哪了?

  师:请同学们仔细观察你们的用来做实验的`两个宝贝,你又会用怎样的发现呢?

  生:我们各组有的圆锥和圆柱不一样。

  师:既然大家观察到了这一点,就请同学们比较一下你们所用的圆锥和圆柱有什么特点?

  生:我们用的圆锥和圆柱的底都不一样,及高也不一样。

  生:我们用的圆锥和圆柱等底等高的。

  师:从大家的实验得知圆锥的体积与底和高有关,现再次请用等底等高的小组汇报结果。

  多媒体演示:

  把一个空圆锥装满沙土倒人一个和它等底等高的圆柱里,正好三次倒满,

  师:一定要用等底等高这个条件哦。

  现在请同学们用自己的话归纳实验结果,抽人汇报。

  师板书:圆锥的体积是与它等底等高的圆柱体积的三分之一

  圆柱的体积是与它等底等高的圆锥体积的3倍。

  因为圆柱的体积=底面积高

  推导出圆锥的体积=1/3底面积高

  用字母表示v = 1/3sh

  抽人指出s、h所代表什么?(s代表圆锥的底、h代表圆锥的高)sh又表示什么?师生达成共识,强调:千万不要漏乘三分之一哦。

  3、师:现在我们可以既简单又科学的帮农民伯伯解决打谷场上的数学问题了吧

  师:有了这个公式就方便多了。老师还想请孩子们帮工人叔叔解决工地上沙子的问题,现在机会到了哦,请打开书第 26 页完成例 3,请同学们用自已学到的方法去分析它,解决它,你会收获到成功的喜悦的

  归纳总结,完善认识

  师;请同学们谈谈知道哪些条件就可以求圆锥的体积:

  1、已知与圆锥等底等高的圆柱的体积。

  2、已知圆锥的底面积和高。

  3、已知圆锥的底面半径和高。

  4、已知圆锥的底面直径和高。

  5、已知圆锥的底面周长和高。

  师;孩子们。让我们插上知识的翅膀,尽情地飞翔吧。

  课件出示练习

  (一)、填空:

  1、圆锥的体积=( ),用字母表示是( )。

  2、圆柱体积的与和它( )的圆锥的体积相等。

  3、一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是( )立方分米。

  4、一个圆锥的底面积是12平方厘米,高是6厘米,体积是( )立方厘米。

  (二)、认真思考、细心判断:

  1、圆柱体的体积一定比圆锥体的体积大( )

  2、圆锥的体积等于和它等底等高圆柱体积的 ( )

  3、正方体、长方体、圆锥体的体积都等于底面积高。 ( )

  4、一个圆柱的体积是27立方米,和它等底等高的圆锥的体积是9立方米。 ( )

  (三)、填表

  已 知 条 件

  体积

  圆锥底面半径2厘米,高9厘米

  圆锥底面直径6厘米,高3厘米

  圆锥底面周长6.28分米,高6分米

  全课总结;我们来回忆这节课,我们学到了什么数学知识,用到了什么数学思想?

  师:转化的数学思想在我们的数学中经常用到,把难转化成易,把复杂转化成简单,把未知转化成已知,希望同学们能很好的运用。

圆锥的体积教学设计 篇11

  一、学习内容:

  教师提供 小学数学六年级下册14页----17页。

  二、学生提供:

  等底等高的圆柱和圆锥教学用具各一个,小水盆,一些绿豆。

  三、学习目标:

  1、结合具体情景和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义。

  2、经历“类比猜想---验证说明”的探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并解决一些简单的实际问题。

  四、重点难点:

  重点:圆锥的体积计算。

  难点:圆锥的体积公式推导。

  关键:圆锥的体积是与它等底等高的圆柱体积的三分之一。

  五、学习准备:

  等底等高的圆柱和圆锥教学用具各一个,一个三角形和一个长方形。

  看看你们能不能发现这两个图形之间隐藏的关系?你有什么发现?

  长方形的长等于三角形的底,长方形的宽等于三角形的高。

  你的发现真了不起。这种情况在数学中叫做“等底等高”。在“等底等高”的条件时,它们的面积又有什么样的关系呢?

  三角形的面积等于长方形面积的一半或长方形面积是三角形面积的2倍。

  六、布置课前预习

  点拨自学

  1、圆柱和圆锥有哪些相同的地方?

  2、圆柱和圆锥有哪些不同的地方?

  3、圆锥的体积和圆柱的体积有什么关系呢?

  请小组开始讨论。注意,这里的圆柱和圆锥指的就是图上的圆柱和圆锥哟! 按照预习中学生存在的问题,教师加以点拨。

  七、交流解惑:

  它们的底面积相等,高也相等

  圆柱有无数条高,圆锥只有一条高。圆锥体积比圆柱小……

  动手做实验:把圆锥装满绿豆,倒入圆柱中,看倒几次能把圆柱装满。

  通过实验操作,得出了正确的科学的结论:圆锥的体积等于和它等底等高的圆柱体积的三分之一。

  组内交流

  组际解疑

  老师点拨

  八、合作考试

  1、一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?(口算)

  2、沈老师在大梅沙玩,将沙堆成一个圆锥形,底面半径约3分米,高约2.7分米,求沙堆的体积。(只列式不计算)

  3、在打谷场上,有一个近似于圆锥的小麦堆,测底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(只列式不计算)

  4、如图,求这枝大笔的体积。单位:厘米)(只列式不计算)

  5、将一个底面半径是2分米,高是4分米的圆柱形木块,削成一个大的圆锥,那么削去的体积是多少立方分米?(口算)

  九、自我总结:

  通过今天的`学习,我学会了 ,以后我会 在 方面更加努力的。

  十、教学反思:

  本节课通过交流、问答、猜想等形式,调动学生学习的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验来就兴趣极高,在实验过程中通过学生的亲身体验知识的探究的过程,加深学生对所学知识的理解,学生学习的积极性被调动起来了,学生学得轻松、愉快。充分让学生体会到了等底等高的圆锥的体积是圆柱的三分之一。

【圆锥的体积教学设计】相关文章:

《圆锥的体积》教学设计03-07

圆锥的体积教学设计02-02

《圆锥的体积》教学设计15篇03-07

《圆锥的体积》教学设计(15篇)03-07

圆锥的体积教学设计15篇05-25

《圆锥的体积》教学设计通用15篇03-07

圆锥的体积的微课设计02-23

圆锥的体积教学评课稿(精选5篇)09-25

体积和体积单位教学设计11-18

圆锥认识的教学设计03-05